Display options
Share it on

Biol Open. 2017 Nov 15;6(11):1707-1719. doi: 10.1242/bio.029579.

Cullin-3 and its adaptor protein ANKFY1 determine the surface level of integrin β1 in endothelial cells.

Biology open

Masashi Maekawa, Kazufumi Tanigawa, Tomohisa Sakaue, Hiromi Hiyoshi, Eiji Kubota, Takashi Joh, Yuji Watanabe, Tomohiko Taguchi, Shigeki Higashiyama

Affiliations

  1. Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Matsuyama 791-0295, Japan [email protected] [email protected].
  2. Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Matsuyama 791-0295, Japan.
  3. Department of Gastrointestinal Surgery and Surgical Oncology, Ehime University Graduate School of Medicine, Matsuyama 791-0295, Japan.
  4. Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Matsuyama 791-0295, Japan.
  5. Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Matsuyama 791-0295, Japan.
  6. Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya City 467-8601, Japan.
  7. Department of Health Chemistry, Graduate School of Pharmaceutical Science, University of Tokyo, Tokyo 113-0033, Japan.
  8. Pathological Cell Biology Laboratory, Graduate School of Pharmaceutical Science, University of Tokyo, Tokyo 113-0033, Japan.

PMID: 29038302 PMCID: PMC5703617 DOI: 10.1242/bio.029579

Abstract

Angiogenesis, the formation of new blood vessels from the pre-existing vasculature, is related to numerous pathophysiological events. We previously reported that a RING ubiquitin ligase complex scaffold protein, cullin-3 (CUL3), and one of its adaptor proteins, BAZF, regulated angiogenesis in the mouse retina by suppressing Notch signaling. However, the degree of inhibition of angiogenesis was made greater by CUL3 depletion than by BAZF depletion, suggesting other roles of CUL3 in angiogenesis besides the regulation of Notch signaling. In the present study, we found that CUL3 was critical for the cell surface level of integrin β1, an essential cell adhesion molecule for angiogenesis in HUVECs. By siRNA screening of 175 BTBPs, a family of adaptor proteins for CUL3, we found that ANKFY1/Rabankyrin-5, an early endosomal BTBP, was also critical for localization of surface integrin β1 and angiogenesis. CUL3 interacted with ANKFY1 and was required for the early endosomal localization of ANKFY1. These data suggest that CUL3/ANKFY1 regulates endosomal membrane traffic of integrin β1. Our results highlight the multiple roles of CUL3 in angiogenesis, which are mediated through distinct CUL3-adaptor proteins.

© 2017. Published by The Company of Biologists Ltd.

Keywords: Angiogenesis; Cullin-3 (CUL3); Endothelial cells; Integrin; Membrane trafficking

Conflict of interest statement

Competing interestsThe authors declare no competing or financial interests.

References

  1. Nature. 2009 Apr 9;458(7239):732-6 - PubMed
  2. Cold Spring Harb Perspect Biol. 2011 Feb 01;3(2):null - PubMed
  3. J Cell Biol. 2016 Nov 21;215(4):445-456 - PubMed
  4. Genes Dev. 2004 Apr 15;18(8):901-11 - PubMed
  5. Development. 1993 Dec;119(4):1093-105 - PubMed
  6. Front Pharmacol. 2017 Jan 06;7:519 - PubMed
  7. Blood. 2012 Mar 15;119(11):2688-98 - PubMed
  8. J Cell Sci. 1995 Feb;108 ( Pt 2):595-607 - PubMed
  9. Nat Med. 2002 Sep;8(9):918-21 - PubMed
  10. Nat Commun. 2015 Aug 04;6:7925 - PubMed
  11. Cell. 2009 Dec 24;139(7):1327-41 - PubMed
  12. Development. 2008 Jun;135(12):2193-202 - PubMed
  13. Curr Pharm Des. 2013;19(18):3215-25 - PubMed
  14. Traffic. 2012 May;13(5):745-57 - PubMed
  15. Dev Dyn. 2008 Jan;237(1):75-82 - PubMed
  16. Curr Opin Cell Biol. 2010 Oct;22(5):617-25 - PubMed
  17. Nat Commun. 2015 Mar 10;6:6429 - PubMed
  18. Traffic. 2013 Dec;14(12):1242-54 - PubMed
  19. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13612-7 - PubMed
  20. PLoS Biol. 2004 Sep;2(9):E261 - PubMed
  21. Nat Rev Mol Cell Biol. 2005 Jan;6(1):9-20 - PubMed
  22. Nat Protoc. 2010 Apr;5(4):628-35 - PubMed
  23. J Biochem. 2017 Oct 1;162(4):237-245 - PubMed
  24. EMBO J. 2013 Aug 28;32(17 ):2307-20 - PubMed
  25. J Cell Sci. 2015 Mar 1;128(5):839-52 - PubMed
  26. Development. 1993 Dec;119(4):1079-91 - PubMed
  27. EMBO J. 2015 Mar 4;34(5):669-88 - PubMed
  28. Nat Rev Cancer. 2008 Aug;8(8):592-603 - PubMed
  29. Mol Cell. 2014 May 22;54(4):586-600 - PubMed
  30. Elife. 2016 Mar 23;5:e13841 - PubMed
  31. Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):823-8 - PubMed
  32. J Biol Chem. 2011 Oct 21;286(42):36749-61 - PubMed
  33. Cell Death Dis. 2014 Feb 13;5:e1059 - PubMed
  34. Nat Cell Biol. 2005 Oct;7(10):1014-20 - PubMed
  35. Cell. 2002 Sep 20;110(6):673-87 - PubMed
  36. Am J Pathol. 2000 Apr;156(4):1345-62 - PubMed
  37. Microsc Res Tech. 2008 May;71(5):357-70 - PubMed
  38. Genome Biol. 2005;6(10):R82 - PubMed
  39. Eur J Biochem. 1993 Jul 1;215(1):151-9 - PubMed
  40. Dev Cell. 2010 Jan 19;18(1):39-51 - PubMed
  41. Cancer Sci. 2017 Feb;108(2):208-215 - PubMed
  42. Nature. 2011 May 19;473(7347):298-307 - PubMed
  43. Traffic. 2012 Apr;13(4):610-25 - PubMed
  44. Mol Cell Biol. 2008 Jan;28(2):794-802 - PubMed
  45. Cell. 2011 Sep 16;146(6):873-87 - PubMed
  46. Nature. 2012 Feb 22;482(7386):495-500 - PubMed
  47. Trends Cell Biol. 2015 Mar;25(3):148-57 - PubMed
  48. Mol Biol Cell. 2007 Mar;18(3):899-909 - PubMed

Publication Types