Display options
Share it on

PLoS One. 2017 Nov 10;12(11):e0187854. doi: 10.1371/journal.pone.0187854. eCollection 2017.

Comparison of ancient and modern Chinese based on complex weighted networks.

PloS one

Xinru Cui, Jinxu Qi, Hao Tan, Feng Chen

Affiliations

  1. College of Electronic and Information Engineering, Southwest University, Chongqing, China.
  2. School of Mathematics and Statistics, Southwest University, Chongqing, China.
  3. Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, Chongqing, China.
  4. Chongqing Collaborative Innovation Center for Brain Science.

PMID: 29125870 PMCID: PMC5681291 DOI: 10.1371/journal.pone.0187854

Abstract

In this study, we compare statistical properties of ancient and modern Chinese within the framework of weighted complex networks. We examine two language networks based on different Chinese versions of the Records of the Grand Historian. The comparative results show that Zipf's law holds and that both networks are scale-free and disassortative. The interactivity and connectivity of the two networks lead us to expect that the modern Chinese text would have more phrases than the ancient Chinese one. Furthermore, by considering some of the topological and weighted quantities, we find that expressions in ancient Chinese are briefer than in modern Chinese. These observations indicate that the two languages might have different linguistic mechanisms and combinatorial natures, which we attribute to the stylistic differences and evolution of written Chinese.

References

  1. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):8028-33 - PubMed
  2. Proc Biol Sci. 2001 Nov 7;268(1482):2261-5 - PubMed
  3. Cell. 2011 Oct 28;147(3):690-703 - PubMed
  4. Trends Cogn Sci. 2004 Sep;8(9):418-25 - PubMed
  5. Proc Biol Sci. 2001 Dec 22;268(1485):2603-6 - PubMed
  6. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jun;65(6 Pt 2):066130 - PubMed
  7. Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3747-52 - PubMed
  8. PLoS One. 2014 Apr 23;9(4):e94985 - PubMed
  9. Phys Rev Lett. 2002 Nov 11;89(20):208701 - PubMed
  10. Nature. 2006 Jul 20;442(7100):259-64 - PubMed
  11. Neuroimage. 2010 Sep;52(3):1059-69 - PubMed
  12. Phys Life Rev. 2014 Dec;11(4):598-618 - PubMed
  13. Phys Rev Lett. 2001 Dec 17;87(25):258701 - PubMed
  14. Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Aug;74(2 Pt 2):026102 - PubMed
  15. Phys Rev Lett. 2005 Jan 14;94(1):018102 - PubMed
  16. Cereb Cortex. 2007 Oct;17(10):2407-19 - PubMed
  17. Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Dec;70(6 Pt 2):066149 - PubMed
  18. Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Feb;67(2 Pt 2):026112 - PubMed
  19. Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 2):067103 - PubMed
  20. Nature. 1998 Jun 4;393(6684):440-2 - PubMed
  21. Philos Trans R Soc Lond B Biol Sci. 2014 Oct 5;369(1653):null - PubMed
  22. Ann N Y Acad Sci. 2011 Apr;1224:109-125 - PubMed

MeSH terms

Publication Types