Display options
Share it on

Oncotarget. 2017 Sep 15;8(50):87638-87646. doi: 10.18632/oncotarget.20936. eCollection 2017 Oct 20.

Neoadjuvant olaparib targets hypoxia to improve radioresponse in a homologous recombination-proficient breast cancer model.

Oncotarget

Gerben R Borst, Ramya Kumareswaran, Hatice Yücel, Seyda Telli, Trevor Do, Trevor McKee, Gaetano Zafarana, Jos Jonkers, Marcel Verheij, Mark J O'Connor, Sven Rottenberg, Robert G Bristow

Affiliations

  1. Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.
  2. Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, Canada.
  3. Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Radiation Oncology, Amsterdam, The Netherlands.
  4. Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Molecular Biology, Amsterdam, The Netherlands.
  5. Oncology, Innovative Medicines and Early Development, AstraZeneca, Cambridge, United Kingdom.
  6. Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.

PMID: 29152107 PMCID: PMC5675659 DOI: 10.18632/oncotarget.20936

Abstract

Clinical trials are studying the benefits of combining the PARP-1 inhibitor olaparib with chemotherapy and radiotherapy treatment in a variety of cancer increasing the therapeutic ratio for olaparib may come from its ability to modify the tumour microenvironment by targeting homologous recombination-deficient, hypoxic tumour clonogens, and/or increasing tumour-associated vasodilation to improve oxygenation. Herein, we investigated the effect of prolonged neoadjuvant exposure to olaparib on the tumor microenvironment using a genetically-engineered mouse p53-/- syngeneic breast cancer model, which is proficient in homology-directed DNA repair. We observed increased

Keywords: hypoxia; neoadjuvant treatment; olaparib; radiotherapy; targeted therapy

Conflict of interest statement

CONFLICTS OF INTEREST The authors declare no conflicts of interest.

References

  1. Cancer Res. 2012 Nov 1;72 (21):5588-99 - PubMed
  2. Carcinogenesis. 2014 Nov;35(11):2592-601 - PubMed
  3. Endocr Metab Immune Disord Drug Targets. 2011 Dec;11(4):326-33 - PubMed
  4. Nat Genet. 2001 Dec;29(4):418-25 - PubMed
  5. Mol Cancer Ther. 2011 Oct;10(10):1949-58 - PubMed
  6. Mol Cancer Res. 2015 Nov;13(11):1465-77 - PubMed
  7. Radiother Oncol. 2008 Aug;88(2):258-68 - PubMed
  8. Nature. 2005 Apr 14;434(7035):913-7 - PubMed
  9. Br J Cancer Suppl. 1984;6:39-42 - PubMed
  10. Am J Pathol. 1999 Sep;155(3):739-52 - PubMed
  11. Vasc Cell. 2011 May 19;3(1):12 - PubMed
  12. Radiother Oncol. 2015 Sep;116(3):388-91 - PubMed
  13. Mol Cancer Ther. 2014 Feb;13(2):433-43 - PubMed
  14. Int J Radiat Oncol Biol Phys. 2008 Nov 15;72(4):1188-97 - PubMed
  15. Pharmacotherapy. 2012 Dec;32(12):1095-111 - PubMed
  16. Lancet Oncol. 2002 Dec;3(12):728-37 - PubMed
  17. PLoS Genet. 2013 Jun;9(6):e1003531 - PubMed
  18. Mol Cancer Ther. 2006 Mar;5(3):564-74 - PubMed
  19. EMBO J. 1993 May;12(5):2109-17 - PubMed
  20. Nat Rev Cancer. 2011 Jun;11(6):393-410 - PubMed
  21. Int J Radiat Oncol Biol Phys. 2013 Mar 15;85(4):1110-8 - PubMed
  22. Cancer Res. 2010 Oct 15;70(20):8045-54 - PubMed
  23. Stem Cells. 2009 Sep;27(9):2059-68 - PubMed
  24. Radiat Res. 1983 Nov;96(2):348-58 - PubMed
  25. Nature. 2005 Apr 14;434(7035):917-21 - PubMed
  26. Eur J Cancer. 2007 Sep;43(14 ):2124-33 - PubMed
  27. Cancer Res. 2003 Sep 15;63(18):6008-15 - PubMed
  28. Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):17079-84 - PubMed
  29. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7303-7 - PubMed
  30. Nat Rev Cancer. 2011 Apr;11(4):239-53 - PubMed
  31. Nucleic Acids Res. 2008 Aug;36(13):4454-64 - PubMed

Publication Types