Display options
Share it on

Oncotarget. 2017 Sep 23;8(50):87684-87698. doi: 10.18632/oncotarget.21196. eCollection 2017 Oct 20.

Capsaicin exerts synergistic antitumor effect with sorafenib in hepatocellular carcinoma cells through AMPK activation.

Oncotarget

Alicia Bort, Elena Spínola, Nieves Rodríguez-Henche, Inés Díaz-Laviada

Affiliations

  1. Department of Systems Biology, School of Medicine and Heath Sciences, University of Alcala, Alcalá de Henares, E-28871, Madrid, Spain.
  2. Chemical Research Institute Andrés M. del Río (IQAR), University of Alcala, Alcalá de Henares, E-28871, Madrid, Spain.

PMID: 29152112 PMCID: PMC5675664 DOI: 10.18632/oncotarget.21196

Abstract

In this study, we investigated the antitumoral effects of combined treatment using sorafenib and capsaicin in hepatocellular carcinoma (HCC) cells. Here we showed that the combination of the two drugs had a much stronger inhibitory effect on both HepG2 and Huh-7 human HCC cells growth than either drug alone. The isobolograms demonstrated that the combinations investigated in this study produced a synergistic interaction. In the combination treatment using capsaicin and sorafenib, increased apoptosis, followed by the activation of caspase-9 and PARP, was observed. In addition, the present study demonstrated that sorafenib treatment induces activation of Akt, probably as a mechanism of resistance, whereas capsaicin inhibits Akt providing a possible pathway whereby capsaicin sensitizes to sorafenib in HCC cells. Moreover, capsaicin singly and the combination of capsaicin and sorafenib induce AMPK activation and Acetyl CoA carboxylase phosphorylation in HCC cells. Knocking down of AMPK by selective siRNA abrogates capsaicin-induced Akt inhibition, suggesting the involvement of AMPK in the antiproliferative effect.

Keywords: AMPK; Akt; capsaicin; hepatocellular carcinoma; sorafenib

Conflict of interest statement

CONFLICTS OF INTEREST The authors declare no potential conflicts of interest.

References

  1. J Pharmacol Pharmacother. 2013 Oct;4(4):303-6 - PubMed
  2. BMC Cancer. 2016 Feb 12;16:94 - PubMed
  3. J Pharmacol Exp Ther. 2011 Apr;337(1):155-61 - PubMed
  4. Cancer Lett. 2001 Apr 26;165(2):139-45 - PubMed
  5. Int J Cancer. 2015 Mar 15;136(6):1434-44 - PubMed
  6. Mol Cancer Ther. 2014 Jun;13(6):1589-98 - PubMed
  7. World J Gastroenterol. 2015 Nov 14;21(42):12059-70 - PubMed
  8. J Hematol Oncol. 2016 Mar 08;9:20 - PubMed
  9. Cancer Treat Rev. 2004 Apr;30(2):193-204 - PubMed
  10. Cancer Sci. 2015 May;106(5):567-75 - PubMed
  11. Pharmacol Rev. 2006 Sep;58(3):621-81 - PubMed
  12. Recenti Prog Med. 2015 May;106(5):217-26 - PubMed
  13. Adv Biomed Res. 2016 Jun 08;5:104 - PubMed
  14. Clin J Gastroenterol. 2011 Aug;4(4):185-197 - PubMed
  15. Anticancer Res. 2012 Jul;32(7):2531-6 - PubMed
  16. Cancer Lett. 2015 Oct 10;367(1):1-11 - PubMed
  17. Int J Clin Pract. 2014 May;68(5):609-17 - PubMed
  18. CA Cancer J Clin. 2015 Mar;65(2):87-108 - PubMed
  19. Int J Mol Sci. 2017 Jan 29;18(2): - PubMed
  20. World J Hepatol. 2016 Mar 28;8(9):421-38 - PubMed
  21. Antioxid Redox Signal. 2007 Dec;9(12 ):2087-98 - PubMed
  22. Genes Dev. 2011 Sep 15;25(18):1895-908 - PubMed
  23. Cancer Res. 2010 Jan 15;70(2):440-6 - PubMed
  24. World J Hepatol. 2014 Nov 27;6(11):776-82 - PubMed
  25. Cancer Res. 2016 Jan 1;76(1):117-26 - PubMed
  26. Free Radic Res. 2016 Jul;50(7):744-55 - PubMed
  27. Prog Drug Res. 2014;68:181-208 - PubMed
  28. Horm Cancer. 2016 Jun;7(3):188-95 - PubMed
  29. Neoplasma. 2015 ;62(4):582-91 - PubMed
  30. Oncologist. 2010;15 Suppl 4:5-13 - PubMed
  31. Anticancer Res. 2009 Jan;29(1):165-74 - PubMed

Publication Types