Display options
Share it on

Oncotarget. 2017 Aug 14;8(50):88122-88138. doi: 10.18632/oncotarget.21490. eCollection 2017 Oct 20.

Breast tissue, oral and urinary microbiomes in breast cancer.

Oncotarget

Hannah Wang, Jessica Altemus, Farshad Niazi, Holly Green, Benjamin C Calhoun, Charles Sturgis, Stephen R Grobmyer, Charis Eng

Affiliations

  1. Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
  2. Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, USA.
  3. Surgical Oncology, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA.
  4. Department of Anatomic Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA.
  5. Comprehensive Breast Cancer Program, Cleveland Clinic, Cleveland, OH, USA.
  6. Germline High Risk Focus Group, CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
  7. Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
  8. Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.

PMID: 29152146 PMCID: PMC5675698 DOI: 10.18632/oncotarget.21490

Abstract

It has long been proposed that the gut microbiome contributes to breast carcinogenesis by modifying systemic estrogen levels. This is often cited as a possible mechanism linking breast cancer and high-fat, low-fiber diets as well as antibiotic exposure, associations previously identified in population-based studies. More recently, a distinct microbiome has been identified within breast milk and tissue, but few studies have characterized differences in the breast tissue microbiota of patients with and without cancer, and none have investigated distant body-site microbiomes outside of the gut. We hypothesize that cancerous breast tissue is associated with a microbiomic profile distinct from that of benign breast tissue, and that microbiomes of more distant sites, the oral cavity and urinary tract, will reflect dysbiosis as well. Fifty-seven women with invasive breast cancer undergoing mastectomy and 21 healthy women undergoing cosmetic breast surgery were enrolled. The bacterial 16S rRNA gene was amplified from urine, oral rinse and surgically collected breast tissue, sequenced, and processed through a QIIME-based bioinformatics pipeline. Cancer patient breast tissue microbiomes clustered significantly differently from non-cancer patients (

Keywords: breast cancer; metagenomics; microbiome; oral; urine

Conflict of interest statement

CONFLICTS OF INTEREST The authors declare that they have no relevant conflicts of interest.

References

  1. Genome Biol. 2011 Jun 24;12(6):R60 - PubMed
  2. Appl Environ Microbiol. 2014 May;80(10):3007-14 - PubMed
  3. Biochim Biophys Acta. 2003 Dec 7;1643(1-3):11-24 - PubMed
  4. J Steroid Biochem Mol Biol. 2015 Jan;145:179-86 - PubMed
  5. Clin Cancer Res. 2011 Oct 1;17(19):6118-24 - PubMed
  6. Genome Res. 2009 Jul;19(7):1141-52 - PubMed
  7. Appl Environ Microbiol. 2006 Jul;72(7):5069-72 - PubMed
  8. Cancer Epidemiol Biomarkers Prev. 2016 Jan;25(1):43-50 - PubMed
  9. J Oral Microbiol. 2014 Sep 05;6:null - PubMed
  10. PLoS One. 2010 Mar 10;5(3):e9490 - PubMed
  11. Genome Biol. 2010;11(8):R86 - PubMed
  12. J Transl Med. 2012 Dec 21;10:253 - PubMed
  13. J Urol. 2016 Aug;196(2):435-41 - PubMed
  14. Nucleic Acids Res. 2013 Jan 7;41(1):e1 - PubMed
  15. Carcinogenesis. 2014 Feb;35(2):249-55 - PubMed
  16. BMC Cancer. 2009 Mar 17;9:84 - PubMed
  17. J Forensic Sci. 2006 Jul;51(4):790-4 - PubMed
  18. Plant Signal Behav. 2007 Mar;2(2):74-8 - PubMed
  19. Cell Host Microbe. 2011 Oct 20;10(4):324-35 - PubMed
  20. Annu Rev Public Health. 2014;35:65-82 - PubMed
  21. Sci Rep. 2016 Apr 22;6:24380 - PubMed
  22. PeerJ. 2014 Aug 21;2:e545 - PubMed
  23. Cancer Causes Control. 2011 Apr;22(4):529-40 - PubMed
  24. Environ Microbiol. 2004 Aug;6(8):820-30 - PubMed
  25. J Clin Microbiol. 2011 Sep;49(9):3329-31 - PubMed
  26. FEMS Microbiol Ecol. 2003 Feb 1;43(1):1-11 - PubMed
  27. J Clin Microbiol. 2012 Apr;50(4):1376-83 - PubMed
  28. Science. 2008 Jun 20;320(5883):1647-51 - PubMed
  29. Bioinformatics. 2010 Jan 15;26(2):266-7 - PubMed
  30. Breast Cancer Res Treat. 2012 Aug;134(3):1041-55 - PubMed
  31. Infect Immun. 2000 Jun;68(6):3581-6 - PubMed
  32. Nat Methods. 2010 May;7(5):335-6 - PubMed
  33. J Natl Cancer Inst. 2015 Jun 01;107(8):null - PubMed
  34. Proc Nutr Soc. 2010 Aug;69(3):407-15 - PubMed
  35. Environ Microbiol. 2005 Aug;7(8):1227-38 - PubMed
  36. Genome Res. 2009 Dec;19(12):2317-23 - PubMed
  37. BMC Cancer. 2007 Aug 14;7:158 - PubMed
  38. PLoS One. 2014 Jan 08;9(1):e83744 - PubMed
  39. PLoS Comput Biol. 2014 Apr 03;10(4):e1003531 - PubMed
  40. J Natl Cancer Inst. 1995 Nov 15;87(22):1681-5 - PubMed
  41. Appl Environ Microbiol. 2005 Dec;71(12):8228-35 - PubMed
  42. Gastroenterology. 2008 Jan;134(1):306-23 - PubMed
  43. PeerJ. 2015 Jun 18;3:e1029 - PubMed
  44. Gut Microbes. 2013 May-Jun;4(3):253-8 - PubMed
  45. Genome Res. 2005 Oct;15(10):1451-5 - PubMed
  46. Menopause. 2014 May;21(5):450-8 - PubMed
  47. Curr Protoc Mol Biol. 2010 Jan;Chapter 19:Unit 19.10.1-21 - PubMed
  48. J Clin Endocrinol Metab. 2014 Dec;99(12):4632-40 - PubMed
  49. Bioinformatics. 2010 Oct 1;26(19):2460-1 - PubMed
  50. Sci Rep. 2015 Nov 13;5:16498 - PubMed
  51. Bioinformatics. 2011 Nov 1;27(21):2957-63 - PubMed
  52. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4680-7 - PubMed
  53. Ann Surg. 2001 May;233(5):623-9 - PubMed
  54. Curr Oncol Rep. 2014 Oct;16(10):406 - PubMed
  55. ISME J. 2012 Mar;6(3):610-8 - PubMed
  56. J Appl Microbiol. 2010 Jan;108(1):163-72 - PubMed
  57. Sci Rep. 2016 Aug 03;6:30751 - PubMed
  58. Nat Rev Microbiol. 2008 Oct;6(10 ):776-88 - PubMed
  59. Appl Environ Microbiol. 2016 Jul 29;82(16):5039-48 - PubMed
  60. JAMA. 2004 Feb 18;291(7):827-35 - PubMed
  61. Genome Biol. 2014;15(12):550 - PubMed

Publication Types