Display options
Share it on

Genes (Basel). 2017 Nov 03;8(11). doi: 10.3390/genes8110304.

Target 5000: Target Capture Sequencing for Inherited Retinal Degenerations.

Genes

Adrian Dockery, Kirk Stephenson, David Keegan, Niamh Wynne, Giuliana Silvestri, Peter Humphries, Paul F Kenna, Matthew Carrigan, G Jane Farrar

Affiliations

  1. The School of Genetics & Microbiology, Trinity College Dublin, Dublin 2, Ireland. [email protected].
  2. The Mater Misericordiae University Hospital, Dublin 7, Ireland. [email protected].
  3. The Mater Misericordiae University Hospital, Dublin 7, Ireland. [email protected].
  4. The Research Foundation, Royal Victoria Eye and Ear Hospital, Dublin 2, Ireland. [email protected].
  5. Department of Ophthalmology, The Royal Victoria Hospital, Belfast BT12 6BA, Northern Ireland, UK. [email protected].
  6. Centre for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland, UK. [email protected].
  7. The School of Genetics & Microbiology, Trinity College Dublin, Dublin 2, Ireland. [email protected].
  8. The School of Genetics & Microbiology, Trinity College Dublin, Dublin 2, Ireland. [email protected].
  9. The Research Foundation, Royal Victoria Eye and Ear Hospital, Dublin 2, Ireland. [email protected].
  10. The School of Genetics & Microbiology, Trinity College Dublin, Dublin 2, Ireland. [email protected].
  11. The School of Genetics & Microbiology, Trinity College Dublin, Dublin 2, Ireland. [email protected].

PMID: 29099798 PMCID: PMC5704217 DOI: 10.3390/genes8110304

Abstract

There are an estimated 5000 people in Ireland who currently have an inherited retinal degeneration (IRD). It is the goal of this study, through genetic diagnosis, to better enable these 5000 individuals to obtain a clearer understanding of their condition and improved access to potentially applicable therapies. Here we show the current findings of a target capture next-generation sequencing study of over 750 patients from over 520 pedigrees currently situated in Ireland. We also demonstrate how processes can be implemented to retrospectively analyse patient datasets for the detection of structural variants in previously obtained sequencing reads. Pathogenic or likely pathogenic mutations were detected in 68% of pedigrees tested. We report nearly 30 novel mutations including three large structural variants. The population statistics related to our findings are presented by condition and credited to their respective candidate gene mutations. Rediagnosis rates of clinical phenotypes after genotyping are discussed. Possible causes of failure to detect a candidate mutation are evaluated. Future elements of this project, with a specific emphasis on structural variants and non-coding pathogenic variants, are expected to increase detection rates further and thereby produce an even more comprehensive representation of the genetic landscape of IRDs in Ireland.

Keywords: genetics; genomics; ophthalmology; retina; retinitis pigmentosa

Conflict of interest statement

The authors declare no conflict of interest.

References

  1. Genomics. 1991 Dec;11(4):1170-1 - PubMed
  2. Invest Ophthalmol Vis Sci. 2010 Jul;51(7):3646-52 - PubMed
  3. Sci Rep. 2016 Sep 14;6:33248 - PubMed
  4. 3 Biotech. 2017 Aug;7(4):251 - PubMed
  5. Biomed Res Int. 2015;2015:485624 - PubMed
  6. Hum Mol Genet. 2015 Apr 15;24(8):2125-37 - PubMed
  7. Genome Res. 2012 Aug;22(8):1525-32 - PubMed
  8. Mol Vis. 2016 Jun 10;22:610-25 - PubMed
  9. Sci Rep. 2017 Feb 09;7:42078 - PubMed
  10. Doc Ophthalmol. 2009 Feb;118(1):69-77 - PubMed
  11. Orphanet J Rare Dis. 2013 Aug 08;8:122 - PubMed
  12. J Med Genet. 2005 May;42(5):436-8 - PubMed
  13. Retina. 2017 Aug 09;:null - PubMed
  14. Eur J Hum Genet. 2015 Oct;23(10):1318-27 - PubMed
  15. PLoS One. 2016 Dec 22;11(12 ):e0168966 - PubMed
  16. Sci Rep. 2016 Jun 29;6:28755 - PubMed
  17. Genome Biol. 2014 Jun 26;15(6):R84 - PubMed
  18. Hum Mutat. 2016 Mar;37(3):235-41 - PubMed
  19. EMBO J. 2016 May 17;35(10 ):1098-114 - PubMed
  20. Exp Eye Res. 2015 Sep;138:32-41 - PubMed
  21. Proc Natl Acad Sci U S A. 1988 Jun;85(11):3777-80 - PubMed
  22. Ophthalmology. 2016 Apr;123(4):817-28 - PubMed
  23. Hum Mol Genet. 1992 Dec;1(9):769-71 - PubMed
  24. BMC Genet. 2014 Dec 14;15:143 - PubMed
  25. Nat Genet. 1999 Jul;22(3):248-54 - PubMed
  26. Hum Mutat. 2015 Jan;36(1):39-42 - PubMed
  27. Mol Vis. 2010 Jul 15;16:1353-60 - PubMed
  28. Orphanet J Rare Dis. 2012 Jan 25;7:8 - PubMed
  29. Australas Med J. 2012;5(12):639-42 - PubMed
  30. Genet Med. 2015 Apr;17(4):307-11 - PubMed
  31. J Med Genet. 2015 Aug;52(8):503-13 - PubMed
  32. J Mol Diagn. 2016 Nov;18(6):817-824 - PubMed
  33. Hum Mutat. 1999;13(1):75-81 - PubMed
  34. Br J Ophthalmol. 2012 Jul;96(7):1018-22 - PubMed
  35. Hum Mutat. 2017 Apr;38(4):400-408 - PubMed
  36. Genet Med. 2015 May;17(5):405-24 - PubMed
  37. Hum Mutat. 2015 Jan;36(1):43-7 - PubMed
  38. Curr Genomics. 2011 Jun;12(4):238-49 - PubMed
  39. Fly (Austin). 2012 Apr-Jun;6(2):80-92 - PubMed
  40. Eur J Hum Genet. 2017 May;25(5):591-599 - PubMed
  41. Biomed Res Int. 2016;2016:6341870 - PubMed
  42. J Med Genet. 2017 Jun;54(6):404-412 - PubMed
  43. Ophthalmic Genet. 2017 Dec;38(6):549-554 - PubMed
  44. Retin Cases Brief Rep. 2017 Winter;11 Suppl 1:S202-S210 - PubMed
  45. Nat Genet. 2016 Dec;48(12 ):1581-1586 - PubMed
  46. Clin Ophthalmol. 2014 Aug 20;8:1561-3 - PubMed
  47. Bioinformatics. 2009 Jul 15;25(14):1754-60 - PubMed
  48. Hum Mol Genet. 2017 Aug 1;26(R1):R2-R11 - PubMed
  49. Am J Hum Genet. 2006 Sep;79(3):556-61 - PubMed
  50. J Med Genet. 2003 Sep;40(9):641-50 - PubMed
  51. Vision Res. 2012 Dec 15;75:77-87 - PubMed
  52. Br J Ophthalmol. 2016 Apr;100(4):495-500 - PubMed
  53. Ophthalmology. 2016 Jun;123(6):1375-85 - PubMed
  54. Genet Med. 2017 Jun;19(6):643-651 - PubMed
  55. Invest Ophthalmol Vis Sci. 2017 Jan 1;58(1):394-403 - PubMed

Publication Types