Display options
Share it on

Sci Rep. 2017 Oct 17;7(1):13308. doi: 10.1038/s41598-017-13754-w.

Composition-dependent nanoelectronics of amido-phenazines: non-volatile RRAM and WORM memory devices.

Scientific reports

Dilip K Maiti, Sudipto Debnath, Sk Masum Nawaz, Bapi Dey, Enakhi Dinda, Dipanwita Roy, Sudipta Ray, Abhijit Mallik, Syed A Hussain

Affiliations

  1. Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata, 700009, India. [email protected].
  2. Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata, 700009, India.
  3. Department of Electronic Science, 92 A. P. C. Road, Kolkata, 700009, India.
  4. Department of Physics, Tripura University, Suryamaninagar, 799022, Tripura, India.
  5. Department of Electronic Science, 92 A. P. C. Road, Kolkata, 700009, India. [email protected].
  6. Department of Physics, Tripura University, Suryamaninagar, 799022, Tripura, India. [email protected].

PMID: 29042660 PMCID: PMC5645374 DOI: 10.1038/s41598-017-13754-w

Abstract

A metal-free three component cyclization reaction with amidation is devised for direct synthesis of DFT-designed amido-phenazine derivative bearing noncovalent gluing interactions to fabricate organic nanomaterials. Composition-dependent organic nanoelectronics for nonvolatile memory devices are discovered using mixed phenazine-stearic acid (SA) nanomaterials. We discovered simultaneous two different types of nonmagnetic and non-moisture sensitive switching resistance properties of fabricated devices utilizing mixed organic nanomaterials: (a) sample-1(8:SA = 1:3) is initially off, turning on at a threshold, but it does not turn off again with the application of any voltage, and (b) sample-2 (8:SA = 3:1) is initially off, turning on at a sharp threshold and off again by reversing the polarity. No negative differential resistance is observed in either type. These samples have different device implementations: sample-1 is attractive for write-once-read-many-times memory devices, such as novel non-editable database, archival memory, electronic voting, radio frequency identification, sample-2 is useful for resistive-switching random access memory application.

References

  1. Nat Nanotechnol. 2008 Jul;3(7):429-33 - PubMed
  2. Chem Asian J. 2014 Mar;9(3):779-83 - PubMed
  3. Chem Rev. 2004 Mar;104(3):1663-86 - PubMed
  4. Sci Rep. 2016 Apr 13;6:24406 - PubMed
  5. J Am Chem Soc. 2013 Aug 28;135(34):12548-51 - PubMed
  6. Nat Mater. 2014 Aug;13(8):773-5 - PubMed
  7. Nat Nanotechnol. 2006 Oct;1(1):72-7 - PubMed
  8. Nat Mater. 2007 Nov;6(11):824-32 - PubMed
  9. Sci Rep. 2016 Jun 17;6:28155 - PubMed
  10. Nature. 2008 Jun 19;453(7198):996-7 - PubMed
  11. Chem Rev. 2012 Apr 11;112(4):2208-67 - PubMed
  12. Phys Rev B Condens Matter. 1994 May 15;49(19):13611-13615 - PubMed
  13. Nat Chem Biol. 2006 Feb;2(2):71-8 - PubMed
  14. J Am Chem Soc. 2012 Dec 26;134(51):20776-82 - PubMed
  15. Nature. 2003 Sep 18;425(6955):274-8 - PubMed
  16. J Org Chem. 2015 Mar 20;80(6):3030-5 - PubMed
  17. Nano Lett. 2012 Jun 13;12(6):2732-9 - PubMed
  18. Nat Mater. 2007 Nov;6(11):833-40 - PubMed
  19. ACS Appl Mater Interfaces. 2013 Feb;5(4):1317-26 - PubMed
  20. J Phys Chem A. 2014 Jan 9;118(1):144-51 - PubMed
  21. J Am Coll Surg. 1998 Aug;187(2):212-6 - PubMed
  22. Nano Lett. 2016 Sep 14;16(9):5909-16 - PubMed
  23. J Agric Food Chem. 2013 Jul 3;61(26):6336-43 - PubMed
  24. Nano Lett. 2005 Jun;5(6):1077-80 - PubMed
  25. Sci Rep. 2015 Nov 27;5:17103 - PubMed
  26. Nat Mater. 2004 Dec;3(12):918-22 - PubMed
  27. J Colloid Interface Sci. 2006 Jul 15;299(2):785-90 - PubMed
  28. J Org Chem. 2009 Nov 6;74(21):8086-97 - PubMed
  29. Nat Commun. 2014 Aug 21;5:4720 - PubMed

Publication Types