Display options
Share it on

ACS Appl Mater Interfaces. 2017 Dec 06;9(48):42372-42382. doi: 10.1021/acsami.7b14291. Epub 2017 Nov 27.

Silicon Nanomembranes with Hybrid Crystal Orientations and Strain States.

ACS applied materials & interfaces

Shelley A Scott, Christoph Deneke, Deborah M Paskiewicz, Hyuk Ju Ryu, Angelo Malachias, Stefan Baunack, Oliver G Schmidt, Donald E Savage, Mark A Eriksson, Max G Lagally

Affiliations

  1. University of Wisconsin , Madison, Wisconsin 53706, United States.
  2. Laboratoria Nacional de Nanotechnologia, Centro Nacional de Pesquisa em Energia e Materiais , 13083-100 Campinas, Brazil.
  3. IFW Dresden , Helmholtzstrasse 20, D-01069 Dresden, Germany.
  4. Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas (Unicamp) , 13083-859 Campinas, São Paulo, Brazil.
  5. Universidade Federal de Minas Gerais , CP 702, 30123-970 Belo Horizonte, Brazil.

PMID: 29129058 DOI: 10.1021/acsami.7b14291

Abstract

Methods to integrate different crystal orientations, strain states, and compositions of semiconductors in planar and preferably flexible configurations may enable nontraditional sensing-, stimulating-, or communication-device applications. We combine crystalline-silicon nanomembranes, patterning, membrane transfer, and epitaxial growth to demonstrate planar arrays of different orientations and strain states of Si in a single membrane, which is then readily transferable to other substrates, including flexible supports. As examples, regions of Si(001) and Si(110) or strained Si(110) are combined to form a multicomponent, single substrate with high-quality narrow interfaces. We perform extensive structural characterization of all interfaces and measure charge-carrier mobilities in different regions of a 2D quilt. The method is readily extendable to include varying compositions or different classes of materials.

Keywords: epitaxy; hybrid crystalline materials; interfaces; selective growth; silicon nanomembranes; strain engineering

Publication Types