Display options
Share it on

Front Chem. 2017 Oct 11;5:73. doi: 10.3389/fchem.2017.00073. eCollection 2017.

Chemical Proteomics for Target Discovery of Head-to-Tail Cyclized Mini-Proteins.

Frontiers in chemistry

Roland Hellinger, Kathrin Thell, Mina Vasileva, Taj Muhammad, Sunithi Gunasekera, Daniel Kümmel, Ulf Göransson, Christian W Becker, Christian W Gruber

Affiliations

  1. Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
  2. Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.
  3. School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany.
  4. Department of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria.
  5. School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD, Australia.

PMID: 29075625 PMCID: PMC5641551 DOI: 10.3389/fchem.2017.00073

Abstract

Target deconvolution is one of the most challenging tasks in drug discovery, but a key step in drug development. In contrast to small molecules, there is a lack of validated and robust methodologies for target elucidation of peptides. In particular, it is difficult to apply these methods to cyclic and cysteine-stabilized peptides since they exhibit reduced amenability to chemical modification and affinity capture; however, such ribosomally synthesized and post-translationally modified peptide natural products are rich sources of promising drug candidates. For example, plant-derived circular peptides called cyclotides have recently attracted much attention due to their immunosuppressive effects and oral activity in the treatment of multiple sclerosis in mice, but their molecular target has hitherto not been reported. In this study, a chemical proteomics approach using photo-affinity crosslinking was developed to determine a target for the circular peptide [T20K]kalata B1. Using this prototypic nature-derived peptide enabled the identification of a possible functional modulation of 14-3-3 proteins. This biochemical interaction was validated via competition pull down assays as well as a cellular reporter assay indicating an effect on 14-3-3-dependent transcriptional activity. As proof of concept, the presented approach may be applicable for target elucidation of various cyclic peptides and mini-proteins, in particular cyclotides, which represent a promising class of molecules in drug discovery and development.

Keywords: chemical proteomics; cyclic protein; cyclotides; peptide-protein interaction; photo-affinity labeling

References

  1. Cell. 1999 Mar 19;96(6):857-68 - PubMed
  2. J Mol Biol. 1999 Dec 17;294(5):1327-36 - PubMed
  3. Oncogene. 2001 Oct 1;20(44):6331-8 - PubMed
  4. J Biol Chem. 2003 Mar 7;278(10):8606-16 - PubMed
  5. Structure. 2004 Jan;12(1):85-94 - PubMed
  6. J Biol Chem. 2007 Jul 13;282(28):20435-46 - PubMed
  7. Nat Rev Drug Discov. 2007 Nov;6(11):891-903 - PubMed
  8. Curr Protoc Protein Sci. 2001 May;Chapter 18:Unit18.4 - PubMed
  9. Plant Cell. 2008 Sep;20(9):2471-83 - PubMed
  10. Angew Chem Int Ed Engl. 2009;48(38):6974-98 - PubMed
  11. Clin Dev Immunol. 2009;2009:681482 - PubMed
  12. Angew Chem Int Ed Engl. 2010 Apr 1;49(15):2680-98 - PubMed
  13. Biopolymers. 2010;94(5):611-6 - PubMed
  14. Trends Pharmacol Sci. 2010 Sep;31(9):434-41 - PubMed
  15. Nat Rev Drug Discov. 2011 Aug 01;10(8):579-90 - PubMed
  16. J Nat Prod. 2012 Feb 24;75(2):167-74 - PubMed
  17. Expert Opin Drug Discov. 2012 Mar;7(3):179-94 - PubMed
  18. Angew Chem Int Ed Engl. 2012 May 29;51(22):5447-51 - PubMed
  19. Angew Chem Int Ed Engl. 2012 Jun 4;51(23):5620-4 - PubMed
  20. Chem Biol. 2012 Jun 22;19(6):764-71 - PubMed
  21. J Biol Chem. 2012 Aug 31;287(36):30436-43 - PubMed
  22. J Biol Chem. 2012 Nov 23;287(48):40493-501 - PubMed
  23. J Med Chem. 2012 Dec 13;55(23):10729-34 - PubMed
  24. Nat Prod Rep. 2013 Jan;30(1):108-60 - PubMed
  25. Nucleic Acids Res. 2013 Jan;41(Database issue):D1063-9 - PubMed
  26. Chem Biol Drug Des. 2013 Jan;81(1):136-47 - PubMed
  27. Bioorg Med Chem. 2013 Jul 15;21(14):4058-62 - PubMed
  28. Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):E377-86 - PubMed
  29. Angew Chem Int Ed Engl. 2013 Mar 4;52(10):2744-92 - PubMed
  30. ACS Chem Biol. 2013;8(6):1147-54 - PubMed
  31. Drug Discov Today. 2013 Sep;18(17-18):807-17 - PubMed
  32. PLoS One. 2013 Jun 26;8(6):e68016 - PubMed
  33. J Biol Chem. 2013 Oct 4;288(40):28831-44 - PubMed
  34. Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):21183-8 - PubMed
  35. Drug Discov Today. 2014 May;19(5):645-53 - PubMed
  36. Angew Chem Int Ed Engl. 2014 Aug 25;53(35):9128-40 - PubMed
  37. Front Chem. 2014 Aug 08;2:62 - PubMed
  38. Mol Cancer Ther. 2014 Nov;13(11):2751-62 - PubMed
  39. Curr Drug Targets. 2015;16(1):60-76 - PubMed
  40. Science. 2015 Jan 23;347(6220):1260419 - PubMed
  41. Nat Rev Drug Discov. 2015 Feb;14(2):111-29 - PubMed
  42. Toxins (Basel). 2015 Mar 27;7(4):1079-101 - PubMed
  43. J Nat Prod. 2015 May 22;78(5):1073-82 - PubMed
  44. Nat Chem Biol. 2015 Jun;11(6):368-72 - PubMed
  45. Prog Biophys Mol Biol. 2015 Oct;119(1):10-9 - PubMed
  46. Nat Commun. 2015 Jul 16;6:7530 - PubMed
  47. J Proteome Res. 2015 Aug 7;14(8):3274-83 - PubMed
  48. Nat Chem Biol. 2015 Aug;11(8):536-41 - PubMed
  49. J Proteome Res. 2015 Nov 6;14(11):4851-62 - PubMed
  50. Biopolymers. 2016 Jan;106(1):25-36 - PubMed
  51. Drug Discov Today. 2016 Feb;21(2):278-87 - PubMed
  52. Angew Chem Int Ed Engl. 2015 Dec 21;54(52):15720-4 - PubMed
  53. Nat Rev Drug Discov. 2015 Dec;14(12):807-9 - PubMed
  54. ACS Chem Biol. 2016 May 20;11(5):1245-54 - PubMed
  55. Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):3960-5 - PubMed
  56. Eur J Med Chem. 2017 Aug 18;136:573-584 - PubMed
  57. Biochemistry. 2017 Aug 1;56(30):3972-3982 - PubMed
  58. Front Pharmacol. 2017 Sep 25;8:616 - PubMed
  59. Anal Biochem. 1981 Oct;117(1):147-57 - PubMed
  60. Biochemistry. 1995 Apr 4;34(13):4147-58 - PubMed
  61. J Biomol NMR. 1995 Jan;5(1):14-24 - PubMed
  62. J Biomol NMR. 1995 Jan;5(1):67-81 - PubMed
  63. Protein Sci. 1998 Jul;7(7):1583-92 - PubMed

Publication Types