Display options
Share it on

Curr Opin Syst Biol. 2017 Feb;1:16-24. doi: 10.1016/j.coisb.2016.12.003. Epub 2017 Feb 24.

An operational view of intercellular signaling pathways.

Current opinion in systems biology

Yaron E Antebi, Nagarajan Nandagopal, Michael B Elowitz

Affiliations

  1. Division of Biology and Biological Engineering and Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA.
  2. Howard Hughes Medical Institute, USA.

PMID: 29104946 PMCID: PMC5665397 DOI: 10.1016/j.coisb.2016.12.003

Abstract

Animal cells use a conserved repertoire of intercellular signaling pathways to communicate with one another. These pathways are well-studied from a molecular point of view. However, we often lack an "operational" understanding that would allow us to use these pathways to rationally control cellular behaviors. This requires knowing what dynamic input features each pathway perceives and how it processes those inputs to control downstream processes. To address these questions, researchers have begun to reconstitute signaling pathways in living cells, analyzing their dynamic responses to stimuli, and developing new functional representations of their behavior. Here we review important insights obtained through these new approaches, and discuss challenges and opportunities in understanding signaling pathways from an operational point of view.

References

  1. Nature. 2008 Sep 25;455(7212):485-90 - PubMed
  2. Science. 2013 Jan 25;339(6118):460-4 - PubMed
  3. Mol Cell. 2013 Jan 24;49(2):322-30 - PubMed
  4. Cell. 2016 Feb 11;164(4):780-91 - PubMed
  5. Cell. 2013 Oct 10;155(2):448-61 - PubMed
  6. Science. 2016 May 20;352(6288):990-3 - PubMed
  7. Cell. 2011 Jan 7;144(1):119-31 - PubMed
  8. Cell Stem Cell. 2013 Dec 5;13(6):734-44 - PubMed
  9. Nat Med. 2010 Feb;16(2):232-6 - PubMed
  10. Proc Natl Acad Sci U S A. 2003 Jan 21;100(2):691-6 - PubMed
  11. Nature. 2010 May 6;465(7294):86-90 - PubMed
  12. Nat Chem Biol. 2011 Jan;7(1):34-40 - PubMed
  13. Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):E1947-56 - PubMed
  14. Nat Rev Drug Discov. 2014 May;13(5):357-78 - PubMed
  15. Nature. 1997 Jun 26;387(6636):913-7 - PubMed
  16. PLoS Comput Biol. 2011 Jun;7(6):e1002069 - PubMed
  17. Elife. 2016 Sep 30;5:null - PubMed
  18. Cell. 2013 Feb 28;152(5):945-56 - PubMed
  19. Annu Rev Cell Dev Biol. 2015;31:269-89 - PubMed
  20. Curr Opin Microbiol. 2010 Apr;13(2):184-9 - PubMed
  21. BMB Rep. 2011 Oct;44(10):619-34 - PubMed
  22. Annu Rev Biochem. 2000;69:183-215 - PubMed
  23. Nat Struct Mol Biol. 2011 Dec 18;19(1):31-9 - PubMed
  24. Dev Cell. 2014 Aug 11;30(3):334-42 - PubMed
  25. Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):18090-5 - PubMed
  26. Dev Cell. 2009 Jul;17(1):9-26 - PubMed
  27. J Theor Biol. 1996 Dec 21;183(4):429-46 - PubMed
  28. Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):4140-5 - PubMed
  29. Nat Rev Drug Discov. 2014 Dec;13(12):928-42 - PubMed
  30. Cell. 1982 Nov;31(1):215-26 - PubMed
  31. Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19931-5 - PubMed
  32. Science. 2013 Dec 6;342(6163):1193-200 - PubMed
  33. Cell. 2008 Jun 13;133(6):1043-54 - PubMed
  34. Nat Rev Mol Cell Biol. 2016 Nov;17 (11):722-735 - PubMed
  35. Nat Rev Immunol. 2004 Jan;4(1):67-72 - PubMed
  36. Curr Opin Struct Biol. 2016 Aug;39:106-114 - PubMed
  37. Sci Signal. 2010 Jul 06;3(129):ra51 - PubMed
  38. Elife. 2014 Sep 25;3:e02950 - PubMed
  39. Annu Rev Microbiol. 2012;66:325-47 - PubMed
  40. Mol Cell. 2009 Dec 11;36(5):872-84 - PubMed
  41. Science. 2011 Oct 21;334(6054):366-9 - PubMed
  42. Nature. 2015 Nov 5;527(7576):54-8 - PubMed
  43. Proc Natl Acad Sci U S A. 1986 Dec;83(23):8987-91 - PubMed
  44. Curr Biol. 2016 Apr 4;26(7):R269-71 - PubMed
  45. Mol Cell. 2013 Jan 24;49(2):249-61 - PubMed
  46. Trends Biochem Sci. 2014 Oct;39(10):457-64 - PubMed

Publication Types

Grant support