Display options
Share it on

Oncotarget. 2017 Jul 06;8(52):89527-89538. doi: 10.18632/oncotarget.19033. eCollection 2017 Oct 27.

Inhibitor of growth protein 4 interacts with Beclin 1 and represses autophagy.

Oncotarget

Valentina Sica, José Manuel Bravo-San Pedro, Guo Chen, Guillermo Mariño, Sylvie Lachkar, Valentina Izzo, Maria Chiara Maiuri, Mireia Niso-Santano, Guido Kroemer

Affiliations

  1. Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
  2. Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.
  3. Institut National de la Santé et de la Recherche Médicale, Paris, France.
  4. Université Pierre et Marie Curie, Paris, France.
  5. Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.
  6. Departamento de Biología Fundamental, Instituto de Investigación Sanitaria del Principado de Asturias, Universidad de Oviedo, Spain.
  7. Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Cáceres, Spain.
  8. Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, C.P, Cáceres, Cáceres, Spain.
  9. Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
  10. Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.

PMID: 29163768 PMCID: PMC5685689 DOI: 10.18632/oncotarget.19033

Abstract

Beclin 1 (BECN1) is a multifunctional protein that activates the pro-autophagic class III phosphatidylinositol 3-kinase (PIK3C3, best known as VPS34), yet also interacts with multiple negative regulators. Here we report that BECN1 interacts with inhibitor of growth family member 4 (ING4), a tumor suppressor protein that is best known for its capacity to interact with the tumor suppressor protein p53 (TP53) and the acetyltransferase E1A binding protein p300 (EP300). Removal of TP53 or EP300 did not affect the BECN1/ING4 interaction, which however was lost upon culture of cells in autophagy-inducing, nutrient free conditions. Depletion of ING4 stimulated the enzymatic activity of PIK3C3, as visualized by means of a red fluorescent protein-tagged short peptide (FYVE) that specifically binds to phosphatidylinositol-3-phosphate (PI3P)-containing subcellular vesicles and enhanced autophagy, as indicated by an enhanced lipidation of microtubule-associated proteins 1A/1B light chain 3 beta (LC3B) and the redistribution of a green-fluorescent protein (GFP)-LC3B fusion protein to cytoplasmic puncta. The generation of GFP-LC3B puncta stimulated by ING4 depletion was reduced by simultaneous depletion, or pharmacological inhibition, of PIK3C3/VPS34. In conclusion, ING4 acts as a negative regulator of the lipid kinase activity of the BECN1 complex, and starvation-induced autophagy is accompanied by the dissociation of the ING4/BECN1 interaction.

Keywords: Autophagy; ING4; PIK3C3; TP53; cancer

Conflict of interest statement

CONFLICTS OF INTEREST There is no conflict of interest.

References

  1. Cell Biochem Biophys. 2014 Dec;70(3):1573-8 - PubMed
  2. J Biol Chem. 2012 Mar 30;287(14):10876-84 - PubMed
  3. Cell Mol Life Sci. 2004 Oct;61(19-20):2597-613 - PubMed
  4. J Clin Invest. 2015 Jan;125(1):85-93 - PubMed
  5. Cancer Gene Ther. 2011 Sep;18(9):627-36 - PubMed
  6. Curr Opin Cell Biol. 2010 Apr;22(2):140-9 - PubMed
  7. Nature. 2013 Feb 14;494(7436):201-6 - PubMed
  8. Urol Int. 2015;94(4):464-71 - PubMed
  9. Aging Cell. 2008 Dec;7(6):783-94 - PubMed
  10. Cell Cycle. 2008 Oct;7(19):3056-61 - PubMed
  11. Int J Cancer. 2008 Oct 1;123(7):1483-90 - PubMed
  12. Cancer Gene Ther. 2012 Oct;19(10):697-706 - PubMed
  13. Biochim Biophys Acta. 2017 Jan;1867(1):19-28 - PubMed
  14. Cancer Metastasis Rev. 2012 Jun;31(1-2):55-73 - PubMed
  15. Mol Biol Evol. 2005 Jan;22(1):104-16 - PubMed
  16. Mol Cell. 2014 Mar 6;53(5):710-25 - PubMed
  17. J Biol Chem. 2008 Jun 6;283(23):15956-64 - PubMed
  18. Mol Cell. 2016 May 19;62(4):473-4 - PubMed
  19. Oncotarget. 2016 Nov 29;7(48):79017-79031 - PubMed
  20. Biochem Cell Biol. 2009 Feb;87(1):117-25 - PubMed
  21. Mol Cell. 2015 Aug 20;59(4):522-39 - PubMed
  22. Technol Cancer Res Treat. 2015 Oct;14(5):617-26 - PubMed
  23. Science. 1998 Nov 20;282(5393):1497-501 - PubMed
  24. Nat Commun. 2015 May 26;6:7215 - PubMed
  25. Cell. 2014 Dec 4;159(6):1263-76 - PubMed
  26. J Mol Neurosci. 2013 Jul;50(3):586-99 - PubMed
  27. Cell. 2005 Sep 23;122(6):927-39 - PubMed
  28. Autophagy. 2016;12 (1):1-222 - PubMed
  29. Cancer Res. 2003 May 15;63(10):2373-8 - PubMed
  30. FEBS Lett. 2004 Jul 16;570(1-3):7-12 - PubMed
  31. J Biol Chem. 2001 Mar 23;276(12):8734-9 - PubMed
  32. EMBO J. 2010 Feb 3;29(3):515-6 - PubMed
  33. Mol Cell. 2012 Dec 14;48(5):667-80 - PubMed
  34. Oncogene. 2014 Apr 10;33(15):1997-2003 - PubMed
  35. Eur Rev Med Pharmacol Sci. 2016 Jul;20(15):3178-85 - PubMed
  36. J Clin Pathol. 2003 Jul;56(7):491-6 - PubMed
  37. Nature. 2008 Feb 28;451(7182):1069-75 - PubMed
  38. Trends Biochem Sci. 2017 Jan;42(1):28-41 - PubMed
  39. EMBO J. 2011 Nov 11;30(24):4908-20 - PubMed
  40. Nat Rev Neurosci. 2016 Aug;17 (8):467-84 - PubMed
  41. Cell Death Differ. 2009 Jan;16(1):87-93 - PubMed
  42. Mol Cell. 2006 Jan 6;21(1):51-64 - PubMed
  43. Cell Death Differ. 2007 May;14(5):1029-39 - PubMed
  44. FEBS Lett. 2017 Jan;591(2):425-432 - PubMed
  45. J Ovarian Res. 2016 Jun 27;9(1):38 - PubMed
  46. EMBO J. 2007 May 16;26(10 ):2527-39 - PubMed
  47. Cell Cycle. 2011 Aug 15;10(16):2763-9 - PubMed
  48. Proc Natl Acad Sci U S A. 2007 Nov 27;104(48):19023-8 - PubMed
  49. Hybrid Hybridomics. 2002 Feb;21(1):1-10 - PubMed
  50. Cell. 2008 Jan 11;132(1):27-42 - PubMed
  51. PLoS One. 2012;7(10):e46823 - PubMed
  52. Autophagy. 2017 Mar 4;13(3):567-578 - PubMed
  53. Mol Cell. 2009 Jan 30;33(2):248-56 - PubMed
  54. Gastric Cancer. 2014 Jan;17(1):87-96 - PubMed
  55. Nature. 2004 Mar 18;428(6980):328-32 - PubMed

Publication Types