Display options
Share it on

Carbon N Y. 2017 Oct;122:389-394. doi: 10.1016/j.carbon.2017.06.093. Epub 2017 Jun 28.

Modified Facile Synthesis for Quantitatively Fluorescent Carbon Dots.

Carbon

Xiaofang Hou, Yin Hu, Ping Wang, Liju Yang, Mohamad M Al Awak, Yongan Tang, Fridah K Twara, Haijun Qian, Ya-Ping Sun

Affiliations

  1. Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, USA.
  2. School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China.
  3. Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA.
  4. Department of Mathematics and Physics, North Carolina Central University, Durham, NC 27707, USA.

PMID: 29176908 PMCID: PMC5697797 DOI: 10.1016/j.carbon.2017.06.093

Abstract

A simple yet consequential modification was made to the popular carbonization processing of citric acid - polyethylenimine precursor mixtures to produce carbon dots (CDots). The modification was primarily on pushing the carbonization processing a little harder at a higher temperature, such as the hydrothermal processing condition of around 330 °C for 6 hours. The CDots thus produced are comparable in spectroscopic and other properties to those obtained in other more controlled syntheses including the deliberate chemical functionalization of preprocessed and selected small carbon nanoparticles, demonstrating the consistency in CDots and reaffirming their general definition as carbon nanoparticles with surface passivation by organic or other species. Equally significant is the finding that the modified processing of citric acid - polyethylenimine precursor mixtures could yield CDots of record-setting fluorescence performance, approaching the upper limit of being quantitatively fluorescent. Thus, the reported work serves as a demonstration on not only the need in selecting the right processing conditions and its associated opportunities in one-pot syntheses of CDots, but also the feasibility in pursuing the preparation of quantitatively fluorescent CDots, which represents an important milestone in the development and understanding of these fluorescent carbon nanomaterials.

References

  1. ACS Appl Mater Interfaces. 2016 Jan 27;8(3):1951-7 - PubMed
  2. Anal Chem. 2012 Jul 17;84(14):6220-4 - PubMed
  3. Chem Commun (Camb). 2013 Nov 18;49(89):10471-3 - PubMed
  4. Chem Commun (Camb). 2012 Apr 25;48(33):3984-6 - PubMed
  5. J Mater Chem C Mater Opt Electron Devices. 2016 Aug 7;4(29):6967-6974 - PubMed
  6. ACS Appl Mater Interfaces. 2016 May 4;8(17 ):10761-6 - PubMed
  7. Chem Commun (Camb). 2011 Mar 28;47(12):3502-4 - PubMed
  8. ACS Appl Mater Interfaces. 2015 Apr 29;7(16):8363-76 - PubMed
  9. J Am Chem Soc. 2011 Apr 6;133(13):4754-7 - PubMed
  10. Angew Chem Int Ed Engl. 2010 Jul 19;49(31):5310-4 - PubMed
  11. Adv Mater. 2012 Sep 25;24(37):5104-10 - PubMed
  12. ACS Appl Mater Interfaces. 2015 Sep 2;7(34):19439-45 - PubMed
  13. Nanoscale. 2011 May;3(5):2023-7 - PubMed
  14. J Am Chem Soc. 2009 Aug 19;131(32):11308-9 - PubMed
  15. ACS Nano. 2014 May 27;8(5):4522-9 - PubMed
  16. Adv Mater. 2012 Nov 14;24(43):5844-8 - PubMed
  17. Langmuir. 2012 Nov 20;28(46):16141-7 - PubMed
  18. Acc Chem Res. 2013 Jan 15;46(1):171-80 - PubMed
  19. ACS Appl Mater Interfaces. 2014 Nov 26;6(22):20487-97 - PubMed
  20. J Am Chem Soc. 2006 Jun 21;128(24):7756-7 - PubMed
  21. Chem Soc Rev. 2015 Jan 7;44(1):362-81 - PubMed
  22. Nanoscale. 2015 Feb 7;7(5):1586-95 - PubMed
  23. Nanotechnology. 2015 Feb 13;26(6):065402 - PubMed
  24. Chem Commun (Camb). 2012 Aug 18;48(64):7955-7 - PubMed
  25. J Mater Chem C Mater Opt Electron Devices. 2016 Nov 28;4(44):10554-10561 - PubMed
  26. Anal Chem. 2013 Sep 3;85(17):8065-9 - PubMed
  27. Nanoscale. 2016 Feb 7;8(5):2532-43 - PubMed
  28. Biomaterials. 2015 May;51:290-302 - PubMed
  29. ACS Appl Mater Interfaces. 2015 Dec 30;7(51):28346-52 - PubMed

Publication Types

Grant support