Display options
Share it on

Cell Mol Bioeng. 2017 Aug;10:295-311. doi: 10.1007/s12195-017-0492-9. Epub 2017 Jul 10.

Ovarian and Breast Cancer Migration Dynamics on Laminin and Fibronectin Bidirectional Gradient Fibers Fabricated via Multiphoton Excited Photochemistry.

Cellular and molecular bioengineering

Visar Ajeti, Jorge Lara-Santiago, Samuel Alkmin, Paul J Campagnola

Affiliations

  1. Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, Madison, WI 53706.

PMID: 29177019 PMCID: PMC5697769 DOI: 10.1007/s12195-017-0492-9

Abstract

INTRODUCTION: Migration mis-regulation is a hallmark of cancer, and remains an important problem in cancer biology. We postulate the needs for better in vitro models to understand the details of cell-matrix interactions. Here, we utilized multiphoton excited (MPE) photochemistry to fabricate models to systematically study migration dynamics operative in breast and ovarian cancer. Gradients are a convenient means to modulate concentration and also have been implicated in metastases.

METHODS: We specifically pattern sub-micron structured gradients from laminin and fibronectin whose up-regulation is associated with increased metastasis and poor prognosis. We developed a new continuous linear bi-directional gradient design, permitting exploration of the underlying cell-matrix interactions of migration, including speed, directness, and f-actin cytoskeleton alignment as a function of concentration. These new models provide both contact guidance and ECM binding cues, and provide a more relevant environment than possible with existing technologies such as flow chambers or 2D printed surfaces.

RESULTS: We found an overall increase in these processes with increasing concentration on both laminin and fibronectin gradients for a series of ovarian and breast cancer lines. Moreover, directness was higher for more metastatic cells, indicating that epithelial or mesenchymal state of the cell type governs the dynamics. However, the specifics of the speed and directedness depend on both the cell type and protein, thus we found that we must consider these processes collectively to obtain a self-consistent picture of the migration. For this purpose, we performed a linear discriminate analysis (LDA) and successfully classified the different cell types on the two protein gradients without molecular biology analysis.

CONCLUSIONS: The bi-gradient structures are versatile tools to performing detailed studies of cell migration, specifically haptotxis. We further suggest the can be used in assessing efficacy of drug treatments targeted at specific matrix components.

Conflict of interest statement

Conflict of interests Visar Ajeti, Jorge Lara-Santiago, Samuel Alkmin, and Paul J. Campagnola declare no conflicts of interest.

References

  1. Gynecol Oncol. 1995 Aug;58(2):216-25 - PubMed
  2. Cell Biol Int. 2014 Jan;38(1):85-91 - PubMed
  3. Clin Exp Metastasis. 2005;22(5):391-402 - PubMed
  4. Am J Pathol. 2004 Oct;165(4):1087-95 - PubMed
  5. Cancer Res. 1998 Mar 1;58(5):900-3 - PubMed
  6. J Clin Invest. 2008 Apr;118(4):1367-79 - PubMed
  7. J Biol Chem. 1986 Feb 5;261(4):1883-9 - PubMed
  8. Integr Biol (Camb). 2009 Jul;1(7):469-76 - PubMed
  9. J Clin Invest. 2014 Oct;124(10):4614-28 - PubMed
  10. Proc Natl Acad Sci U S A. 2006 Dec 26;103(52):19771-6 - PubMed
  11. Langmuir. 2006 Apr 25;22(9):4250-8 - PubMed
  12. Exp Cell Res. 2007 Nov 1;313(18):3859-67 - PubMed
  13. Biomacromolecules. 2005 May-Jun;6(3):1465-74 - PubMed
  14. J Mammary Gland Biol Neoplasia. 2011 Sep;16(3):205-19 - PubMed
  15. Opt Lett. 1997 Jan 15;22(2):132-4 - PubMed
  16. Hepatogastroenterology. 2008 Nov-Dec;55(88):2072-6 - PubMed
  17. J Pathol. 2003 Jul;200(4):465-70 - PubMed
  18. Cell Death Dis. 2013 Nov 07;4:e915 - PubMed
  19. Sci STKE. 2007 Nov 27;2007(414):pl6 - PubMed
  20. Cancer Lett. 1995 May 8;91(2):229-34 - PubMed
  21. Nat Cell Biol. 2007 Sep;9(9):1016-24 - PubMed
  22. Cancer Res. 2000 Oct 1;60(19):5334-9 - PubMed
  23. Nat Rev Cancer. 2011 Jul 22;11(8):573-87 - PubMed
  24. Cancer Discov. 2016 May;6(5):516-31 - PubMed
  25. Semin Reprod Med. 2006 Sep;24(4):270-82 - PubMed
  26. Nature. 2001 May 17;411(6835):375-9 - PubMed
  27. Nat Rev Mol Cell Biol. 2009 Aug;10(8):538-49 - PubMed
  28. Bioengineering (Basel). 2015 Jul 16;2(3):139-159 - PubMed
  29. Oncogene. 2004 Nov 25;23(55):8920-30 - PubMed
  30. Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15895-900 - PubMed
  31. Nano Lett. 2008 Jul;8(7):2063-9 - PubMed
  32. Annu Rev Cell Dev Biol. 2009;25:567-95 - PubMed
  33. Genes Dev. 2004 Aug 15;18(16):1909-25 - PubMed
  34. Cold Spring Harb Perspect Biol. 2011 Sep 01;3(9):a005074 - PubMed
  35. Langmuir. 2005 Mar 29;21(7):3061-8 - PubMed
  36. Gynecol Oncol. 2005 Aug;98(2):182-92 - PubMed
  37. Cell Mol Bioeng. 2012 Sep;5(3):307-319 - PubMed
  38. Mol Endocrinol. 2011 Feb;25(2):327-38 - PubMed
  39. J Cell Biol. 2005 Oct 10;171(1):153-64 - PubMed
  40. Proc Natl Acad Sci U S A. 2004 Nov 16;101(46):16104-8 - PubMed
  41. J Pathol Inform. 2014 Aug 28;5(1):28 - PubMed
  42. Cell. 2009 Nov 25;139(5):891-906 - PubMed
  43. Oncogene. 2008 Nov 24;27(55):6970-80 - PubMed
  44. J Biomed Mater Res A. 2009 Sep 15;90(4):999-1009 - PubMed
  45. Anal Chem. 2003 Nov 1;75(21):5775-82 - PubMed
  46. J Cell Biochem. 2011 Oct;112(10 ):2850-64 - PubMed
  47. Ciba Found Symp. 1984;108:130-45 - PubMed
  48. Cancer Res. 2005 Oct 15;65(20):9280-6 - PubMed
  49. Methods. 2003 Jul;30(3):256-68 - PubMed
  50. Gynecol Oncol. 1999 Jun;73(3):362-7 - PubMed
  51. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12287-91 - PubMed
  52. Nat Rev Cancer. 2009 Jun;9(6):415-28 - PubMed
  53. Opt Express. 2013 Oct 21;21(21):25346-55 - PubMed
  54. Am J Pathol. 1999 May;154(5):1525-37 - PubMed
  55. Trends Mol Med. 2012 Jan;18(1):13-26 - PubMed
  56. Opt Express. 2006 Sep 18;14(19):8613-21 - PubMed
  57. Angew Chem Int Ed Engl. 2007;46(33):6238-58 - PubMed

Publication Types

Grant support