Display options
Share it on

Biophys Rev. 2018 Apr;10(2):583-596. doi: 10.1007/s12551-017-0372-5. Epub 2017 Dec 14.

States of phage T3/T7 capsids: buoyant density centrifugation and cryo-EM.

Biophysical reviews

Philip Serwer, Elena T Wright, Borries Demeler, Wen Jiang

Affiliations

  1. Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA. [email protected].
  2. Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
  3. Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.

PMID: 29243090 PMCID: PMC5899731 DOI: 10.1007/s12551-017-0372-5

Abstract

Mature double-stranded DNA bacteriophages have capsids with symmetrical shells that typically resist disruption, as they must to survive in the wild. However, flexibility and associated dynamism assist function. We describe biochemistry-oriented procedures used to find previously obscure flexibility for capsids of the related phages, T3 and T7. The primary procedures are hydration-based buoyant density ultracentrifugation and purified particle-based cryo-electron microscopy (cryo-EM). We review the buoyant density centrifugation in detail. The mature, stable T3/T7 capsid is a shell flexibility-derived conversion product of an initially assembled procapsid (capsid I). During DNA packaging, capsid I expands and loses a scaffolding protein to form capsid II. The following are observations made with capsid II. (1) The in vivo DNA packaging of wild type T3 generates capsid II that has a slight (1.4%), cryo-EM-detected hyper-expansion relative to the mature phage capsid. (2) DNA packaging in some altered conditions generates more extensive hyper-expansion of capsid II, initially detected by hydration-based preparative buoyant density centrifugation in Nycodenz density gradients. (3) Capsid contraction sometimes occurs, e.g., during quantized leakage of DNA from mature T3 capsids without a tail.

Keywords: Bacteriophage assembly; Capsid flexibility; DNA injection; DNA packaging; Nycodenz

References

  1. Virol J. 2010 Dec 03;7:355 - PubMed
  2. Proc Natl Acad Sci U S A. 1966 Mar;55(3):498-505 - PubMed
  3. Biophys J. 2006 Jul 1;91(1):25-41 - PubMed
  4. J Mol Biol. 1975 Mar 5;92(3):433-48 - PubMed
  5. Science. 2017 Jan 13;355(6321):194-197 - PubMed
  6. Nature. 1975 Jul 10;256(5513):97-103 - PubMed
  7. Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):E4606-14 - PubMed
  8. J Struct Biol. 2014 Jul;187(1):1-9 - PubMed
  9. Virology. 1981 Jan 15;108(1):164-76 - PubMed
  10. Proc Natl Acad Sci U S A. 2014 Nov 4;111(44):15635-40 - PubMed
  11. Bacteriophage. 2016 Feb 18;6(1):e1128513 - PubMed
  12. FEBS Lett. 1975 Feb 1;50(2):102-10 - PubMed
  13. Adv Exp Med Biol. 2012;726:549-84 - PubMed
  14. Science. 2013 Feb 1;339(6119):576-9 - PubMed
  15. Proc Natl Acad Sci U S A. 1970 Jan;65(1):242-8 - PubMed
  16. Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6811-6 - PubMed
  17. Structure. 2012 Aug 8;20(8):1384-90 - PubMed
  18. Phys Chem Chem Phys. 2009 Dec 7;11(45):10553-64 - PubMed
  19. Annu Rev Biophys. 2012;41:473-96 - PubMed
  20. Biophys Rev. 2016 Dec;8(4):385-396 - PubMed
  21. Nature. 2013 Oct 31;502(7473):707-10 - PubMed
  22. Front Immunol. 2012 Apr 10;3:68 - PubMed
  23. Bacteriophage. 2017 Jan 4;6(4):e1268664 - PubMed
  24. Curr Opin Virol. 2014 Apr;5:105-10 - PubMed
  25. Bacteriophage. 2014 Dec 15;4(4):e961869 - PubMed
  26. J Chromatogr A. 1995 Apr 28;698(1-2):251-61 - PubMed
  27. J Virol. 1982 Sep;43(3):1138-42 - PubMed
  28. J Mol Biol. 1992 Jul 20;226(2):311-7 - PubMed
  29. Annu Rev Virol. 2015 Nov;2(1):351-78 - PubMed
  30. Sensors (Basel). 2017 Jan 22;17 (1): - PubMed
  31. J Virol. 1973 Jun;11(6):1024-6 - PubMed
  32. Adv Exp Med Biol. 2012;726:469-87 - PubMed
  33. Virology. 1987 Aug;159(2):244-9 - PubMed
  34. J Virol. 1970 Aug;6(2):149-55 - PubMed
  35. J Mol Biol. 1985 Oct 5;185(3):565-78 - PubMed
  36. Virology. 1982 Oct 30;122(2):392-401 - PubMed
  37. J Mol Biol. 2009 Aug 14;391(2):471-83 - PubMed
  38. Biophys J. 2005 Jun;88(6):3912-23 - PubMed
  39. Virology. 2014 May;456-457:157-70 - PubMed
  40. Virology. 1979 May;95(1):70-84 - PubMed
  41. J Ultrastruct Res. 1977 Aug;60(2):148-68 - PubMed
  42. Genes Cells. 1997 Sep;2(9):537-45 - PubMed
  43. Proc Natl Acad Sci U S A. 1961 Jul;47(7):999-1004 - PubMed
  44. Cell. 2014 Apr 24;157(3):702-713 - PubMed
  45. J Virol. 1991 Jun;65(6):3227-37 - PubMed
  46. Nucleic Acids Res. 1982 Mar 11;10(5):1635-52 - PubMed
  47. J Virol. 1980 Feb;33(2):830-44 - PubMed
  48. Biophys J. 1981 Dec;36(3):743-57 - PubMed
  49. Proc Natl Acad Sci U S A. 1961 Jul 15;47:1005-14 - PubMed
  50. Structure. 2007 Jan;15(1):21-7 - PubMed
  51. Bacteriophage. 2015 Jun 2;5(3):e1056904 - PubMed
  52. J Ultrastruct Res. 1967 Dec 12;21(3):335-60 - PubMed
  53. Bacteriophage. 2014 Jan 1;4(1):e28281 - PubMed
  54. Biopolymers. 1972;11(10):2147-69 - PubMed
  55. Bacteriophage. 2012 Oct 1;2(4):239-255 - PubMed
  56. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2203-7 - PubMed
  57. J Mol Biol. 1980 Mar 25;138(1):65-91 - PubMed
  58. EMBO J. 2005 Nov 2;24(21):3820-9 - PubMed
  59. BMC Res Notes. 2008 Jun 26;1:36 - PubMed
  60. Anal Biochem. 1982 Jun;123(1):23-31 - PubMed
  61. Cell. 1985 Oct;42(3):967-77 - PubMed
  62. Viruses. 2017 May 19;9(5): - PubMed
  63. J Mol Biol. 2002 Jun 21;319(5):1115-32 - PubMed
  64. Fed Proc. 1968 Sep-Oct;27(5):1160-6 - PubMed
  65. Mol Microbiol. 2001 Apr;40(1):1-8 - PubMed
  66. Biophys J. 1992 Nov;63(5):1286-92 - PubMed

Publication Types

Grant support