Display options
Share it on

Oncotarget. 2017 Nov 01;8(59):99336-99346. doi: 10.18632/oncotarget.22242. eCollection 2017 Nov 21.

The sexist behaviour of immune checkpoint inhibitors in cancer therapy?.

Oncotarget

Andrea Botticelli, Concetta Elisa Onesti, Ilaria Zizzari, Bruna Cerbelli, Paolo Sciattella, Mario Occhipinti, Michela Roberto, Francesca Di Pietro, Adriana Bonifacino, Michele Ghidini, Patrizia Vici, Laura Pizzuti, Chiara Napoletano, Lidia Strigari, Giulia D'Amati, Federica Mazzuca, Marianna Nuti, Paolo Marchetti

Affiliations

  1. Medical Oncology Department, Sant'Andrea Hospital, Rome, Italy.
  2. Department of Clinical and Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.
  3. Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy.
  4. Department of Radiological Oncological and Pathological Sciences, "Sapienza" University of Rome, Rome, Italy.
  5. Statistical Department, "Sapienza" University of Rome, Rome, Italy.
  6. Breast Diagnosis and Treatment Unit, Sant'Andrea Hospital, "Sapienza" University of Rome, Rome, Italy.
  7. Oncology Unit, ASST Cremona, Cremona, Italy.
  8. Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
  9. Laboratory of Medical Physics and Expert Systems, IRCCS Regina Elena National Cancer Institute, Rome, Italy.

PMID: 29245905 PMCID: PMC5725096 DOI: 10.18632/oncotarget.22242

Abstract

BACKGROUND: Immune checkpoint inhibitors, targeting the molecules CTLA-4, PD-1 and PD-L1, showed efficacy against several type of cancers and are currently used in clinical practice. An important biological variable that influences innate and adaptive immunity is the sex, acting through genetic, hormonal and environmental factors. The overall differences between sexes could be crucial to evaluate the response to ICIs.

MATERIALS AND METHODS: We performed a meta-analysis of Phase II-III Clinical Trials published up to June 2017 in which anti-CTLA-4, anti-PD-1 and anti-PD-L1 were studied. We extracted the OS and PFS HR differentiated by sex from subgroups analysis of each trial. We analyzed the three classes of drugs separately.

RESULTS: We selected 36 Phase II-III Clinical Trials, 9 of which reported results for OS and 6 for PFS. We analyzed 2 Clinical Trials for OS with anti-CTLA-4, including 1178 patients, observing a benefit for males vs females (HR 0.65, 95% CI 0.55-0.77

CONCLUSIONS: Different mechanisms could be involved in sex differences with regard to immunotherapy. These differences could be relevant to identify immunological targets in order to draw studies exploring novel combinations of immunotherapy agents.

Keywords: Immunology; anti-CTLA-4; anti-PD-1; gender differences; immune checkpoint inhibitors; sex differences

Conflict of interest statement

CONFLICTS OF INTEREST Nothing to declare.

References

  1. N Engl J Med. 2015 Nov 5;373(19):1803-13 - PubMed
  2. Lancet Oncol. 2015 Apr;16(4):375-84 - PubMed
  3. N Engl J Med. 2015 Jan 22;372(4):320-30 - PubMed
  4. Horm Behav. 2017 Feb;88:95-105 - PubMed
  5. Lancet Oncol. 2012 May;13(5):459-65 - PubMed
  6. Lancet. 2016 Apr 30;387(10030):1837-46 - PubMed
  7. Cancer Cell. 2015 Apr 13;27(4):439-49 - PubMed
  8. J Autoimmun. 2010 May;34(3):J287-99 - PubMed
  9. Blood. 2006 May 1;107(9):3639-46 - PubMed
  10. Cancer Cell. 2015 Apr 13;27(4):450-61 - PubMed
  11. N Engl J Med. 2016 Nov 10;375(19):1856-1867 - PubMed
  12. Immunol Lett. 2005 Feb 15;97(1):107-13 - PubMed
  13. J Clin Oncol. 2013 Feb 10;31(5):616-22 - PubMed
  14. J Clin Oncol. 2012 Jun 10;30(17):2046-54 - PubMed
  15. Lancet. 2016 May 7;387(10031):1909-20 - PubMed
  16. Lancet. 2016 Apr 9;387(10027):1540-1550 - PubMed
  17. J Endocrinol. 2006 Dec;191(3):525-35 - PubMed
  18. J Immunol. 2015 Dec 1;195(11):5327-36 - PubMed
  19. JAMA. 2014 Nov 5;312(17):1744-53 - PubMed
  20. Science. 2006 Jun 16;312(5780):1669-72 - PubMed
  21. Lancet Oncol. 2012 Sep;13(9):879-86 - PubMed
  22. Am J Transplant. 2012 Apr;12(4):846-55 - PubMed
  23. Semin Immunopathol. 2017 Apr;39(3):327-331 - PubMed
  24. Clin Cancer Res. 2009 Sep 1;15(17):5591-8 - PubMed
  25. Lancet Oncol. 2015 May;16(5):522-30 - PubMed
  26. Hematology. 2018 Jan;23(1):44-49 - PubMed
  27. N Engl J Med. 2016 Nov 10;375(19):1823-1833 - PubMed
  28. Ann Oncol. 2010 Aug;21(8):1712-7 - PubMed
  29. Invest New Drugs. 2011 Jun;29(3):489-98 - PubMed
  30. J Immunol. 2010 Sep 1;185(5):2747-53 - PubMed
  31. Lancet Oncol. 2016 Nov;17(11):1558-1568 - PubMed
  32. Autoimmun Rev. 2010 Jun;9(8):583-7 - PubMed
  33. Lancet. 2017 Jan 21;389(10066):255-265 - PubMed
  34. N Engl J Med. 2016 Nov 10;375(19):1845-1855 - PubMed
  35. J Transl Med. 2015 Nov 06;13:351 - PubMed
  36. Lancet Oncol. 2015 Aug;16(8):908-18 - PubMed
  37. Nat Rev Immunol. 2016 Oct;16(10):626-38 - PubMed
  38. N Engl J Med. 2015 Oct 22;373(17):1627-39 - PubMed
  39. N Engl J Med. 2015 May 21;372(21):2006-17 - PubMed
  40. Genes Immun. 2009 Jul;10(5):509-16 - PubMed
  41. Oncotarget. 2017 Jan 31;8(5):8890-8899 - PubMed
  42. J Clin Oncol. 2015 May 1;33(13):1430-7 - PubMed
  43. J Immunol. 2006 Aug 15;177(4):2088-96 - PubMed
  44. Oncoimmunology. 2016 Oct 20;5(12):e1247135 - PubMed
  45. J Autoimmun. 2012 May;38(2-3):J109-19 - PubMed
  46. Lancet Oncol. 2010 Feb;11(2):155-64 - PubMed
  47. Adv Exp Med Biol. 2009;665:17-29 - PubMed
  48. Nat Rev Immunol. 2010 Aug;10(8):594-604 - PubMed
  49. Nat Rev Cancer. 2009 Jun;9(6):445-52 - PubMed
  50. Lancet Oncol. 2016 Nov;17(11):1497-1508 - PubMed
  51. N Engl J Med. 2015 Jul 2;373(1):23-34 - PubMed
  52. N Engl J Med. 2011 Jun 30;364(26):2517-26 - PubMed
  53. N Engl J Med. 2017 Mar 16;376(11):1015-1026 - PubMed
  54. N Engl J Med. 2015 Jul 9;373(2):123-35 - PubMed
  55. N Engl J Med. 2015 Jun 25;372(26):2521-32 - PubMed
  56. J Immunol. 2006 Oct 1;177(7):4376-83 - PubMed
  57. N Engl J Med. 2017 Jun 22;376(25):2415-2426 - PubMed
  58. Lancet Oncol. 2015 Mar;16(3):257-65 - PubMed
  59. N Engl J Med. 2012 Jun 28;366(26):2517-9 - PubMed
  60. Ann Oncol. 2016 Jul;27(7):1199-206 - PubMed

Publication Types