Display options
Share it on

J Atr Fibrillation. 2017 Apr 30;9(6):1533. doi: 10.4022/jafib.1533. eCollection 2017.

Thermal Field in Cryoablation Procedures for Pulmonary Veins Isolation: Importance of Esophageal Temperature Monitoring.

Journal of atrial fibrillation

Antonio Fasano, Luca Anfuso, Giuseppe Arena, Claudio Pandozi

Affiliations

  1. Dept. of Mathematics and Informatics U. Dini, Univ. of Florence, Italy, Associated to IASI_CNR, Rome, Italy.
  2. FIAB, Florence, Italy.
  3. Coronary Unit, Apuane Hospital, Massa, Italy.
  4. Cardiovascular Department, San Filippo Neri Hospital, Rome, Italy.

PMID: 29250288 PMCID: PMC5673338 DOI: 10.4022/jafib.1533

Abstract

BACKGROUND: Cryoablation procedures for pulmonary veins isolation have proved to be a successful treatment of atrial fibrillation, but exposure of surrounding organs to excessively low temperatures is potentially dangerous. Hence the importance of monitoring esophageal temperature and at the same time predicting the thermal field induced by the procedure, so to provide clinicians with a valuable tool to take critical decisions.

METHODS AND RESULTS: We formulate a mathematical model for computing the temperature in the relevant region and we use numerical simulations to interpret recorded clinical data. The temperature at the outer esophageal surface can be much lower than the luminal one. Observing the esophageal lumen cooling rate at the early stage of the procedure it is possible to forecast whether temperature is bound to reach dangerous values; the same quantity has a correlation with the steepness of the transesophageal thermal gradient.

CONCLUSION: Monitoring the time evolution of luminal esophageal temperature is of fundamental importance not only to realize but also to predict well in advance critical developments of the procedure.

Keywords: atrial fibrillation; cryo-ablation; esophageal lesion; esophageal temperature monitoring; pulmonary veins isolation; thermal field computation

References

  1. J Cardiovasc Electrophysiol. 2014 May;25(5):466-70 - PubMed
  2. J Cardiovasc Electrophysiol. 2013 May;24(5):492-7 - PubMed
  3. Arq Bras Cardiol. 2013 Jul;101(1):e18-28 - PubMed
  4. Europace. 2016 Mar;18(3):368-75 - PubMed
  5. J Am Coll Cardiol. 2013 Apr 23;61(16):1713-23 - PubMed
  6. J Interv Card Electrophysiol. 2012 Mar;33(2):171-257 - PubMed
  7. Circ Arrhythm Electrophysiol. 2013 Aug;6(4):769-75 - PubMed
  8. J Cardiovasc Electrophysiol. 2012 Nov;23 (11):1254-7 - PubMed
  9. J Cardiovasc Electrophysiol. 2010 Aug 1;21(8):869-74 - PubMed
  10. Physiol Meas. 2005 Oct;26(5):837-48 - PubMed
  11. N Engl J Med. 2016 Jun 9;374(23):2235-45 - PubMed
  12. Biomed Eng Online. 2006 Apr 18;5:24 - PubMed
  13. Heart Rhythm. 2009 Jul;6(7):962-9 - PubMed
  14. Heart Rhythm. 2013 Jun;10(6):789-93 - PubMed
  15. Cardiol Res. 2016 Feb;7(1):36-45 - PubMed
  16. Eur Heart J. 2014 Sep 21;35(36):2454-9 - PubMed
  17. J Cardiovasc Electrophysiol. 2014 Jul;25(7):787-92 - PubMed
  18. Circulation. 2005 Sep 6;112(10):1400-5 - PubMed
  19. J Cardiovasc Electrophysiol. 2014 Feb;25(2):208-13 - PubMed
  20. Circulation. 2010 Nov 30;122(22):2239-45 - PubMed
  21. J Cardiovasc Electrophysiol. 2013 Aug;24(8):919-25 - PubMed
  22. Heart Rhythm. 2015 Feb;12(2):268-74 - PubMed
  23. IEEE Trans Biomed Eng. 2004 Aug;51(8):1348-57 - PubMed
  24. Eur J Radiol. 2009 Dec;72 (3):406-11 - PubMed
  25. Heart Rhythm. 2014 Jan;11(1):8-14 - PubMed
  26. J Cardiovasc Electrophysiol. 2016 Aug;27(8):913-7 - PubMed
  27. Heart Rhythm. 2015 Jul;12(7):1658-66 - PubMed

Publication Types