Display options
Share it on

Biology (Basel). 2017 Dec 18;6(4). doi: 10.3390/biology6040046.

Stability of Signaling Pathways during Aging-A Boolean Network Approach.

Biology

Julian Daniel Schwab, Lea Siegle, Silke Daniela Kühlwein, Michael Kühl, Hans Armin Kestler

Affiliations

  1. Institute of Medical Systems Biology, Ulm University, 89069 Ulm, Germany. [email protected].
  2. International Graduate School of Molecular Medicine, Ulm University, 89069 Ulm, Germany. [email protected].
  3. Institute of Medical Systems Biology, Ulm University, 89069 Ulm, Germany. [email protected].
  4. International Graduate School of Molecular Medicine, Ulm University, 89069 Ulm, Germany. [email protected].
  5. Institute of Medical Systems Biology, Ulm University, 89069 Ulm, Germany. [email protected].
  6. International Graduate School of Molecular Medicine, Ulm University, 89069 Ulm, Germany. [email protected].
  7. Institute of Biochemistry and Molecular Biology, Ulm University, 89069 Ulm, Germany. [email protected].
  8. Institute of Medical Systems Biology, Ulm University, 89069 Ulm, Germany. [email protected].

PMID: 29258225 PMCID: PMC5745451 DOI: 10.3390/biology6040046

Abstract

Biological pathways are thought to be robust against a variety of internal and external perturbations. Fail-safe mechanisms allow for compensation of perturbations to maintain the characteristic function of a pathway. Pathways can undergo changes during aging, which may lead to changes in their stability. Less stable or less robust pathways may be consequential to or increase the susceptibility of the development of diseases. Among others, NF- κ B signaling is a crucial pathway in the process of aging. The NF- κ B system is involved in the immune response and dealing with various internal and external stresses. Boolean networks as models of biological pathways allow for simulation of signaling behavior. They can help to identify which proposed mechanisms are biologically representative and which ones function but do not mirror physical processes-for instance, changes of signaling pathways during the aging process. Boolean networks can be inferred from time-series of gene expression data. This allows us to get insights into the changes of behavior of pathways such as NF- κ B signaling in aged organisms in comparison to young ones.

Keywords: Boolean networks; aging; reconstruction; stability

Conflict of interest statement

The authors declare no conflict of interest.

References

  1. Physiol Genomics. 2003 Jul 07;14(2):149-59 - PubMed
  2. Pac Symp Biocomput. 1999;:17-28 - PubMed
  3. Mech Ageing Dev. 2006 Aug;127(8):687-94 - PubMed
  4. Cell Res. 2011 Jan;21(1):55-70 - PubMed
  5. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 - PubMed
  6. Mol Endocrinol. 2007 Nov;21(11):2605-14 - PubMed
  7. Aging Dis. 2011 Dec;2(6):449-65 - PubMed
  8. Cancers (Basel). 2016 Aug 02;8(8):null - PubMed
  9. Nat Rev Drug Discov. 2007 Mar;6(3):202-10 - PubMed
  10. Science. 2007 Aug 10;317(5839):803-6 - PubMed
  11. Bioinformatics. 2015 Apr 1;31(7):1154-9 - PubMed
  12. Bioinformatics. 2010 May 15;26(10):1378-80 - PubMed
  13. J Clin Immunol. 2009 Jul;29(4):397-405 - PubMed
  14. Mol Syst Biol. 2007;3:137 - PubMed
  15. IEEE/ACM Trans Comput Biol Bioinform. 2011 Sep-Oct;8(5):1393-9 - PubMed
  16. Bioinformatics. 2002 Feb;18(2):261-74 - PubMed
  17. IEEE/ACM Trans Comput Biol Bioinform. 2012;9(2):487-98 - PubMed
  18. Ann N Y Acad Sci. 1988;521:215-25 - PubMed
  19. R Soc Open Sci. 2017 Apr 12;4(4):160872 - PubMed
  20. Biosystems. 2013 Apr;112(1):37-48 - PubMed
  21. Bioinformatics. 2017 Feb 15;33(4):601-604 - PubMed
  22. Int Rev Cell Mol Biol. 2016;326:133-74 - PubMed
  23. Cancer Lett. 2016 Feb 1;371(1):79-89 - PubMed
  24. Chaos. 2013 Jun;23(2):025111 - PubMed
  25. FASEB J. 2008 Jul;22(7):2285-96 - PubMed
  26. Chaos. 2001 Mar;11(1):180-195 - PubMed
  27. J Theor Biol. 1969 Mar;22(3):437-67 - PubMed
  28. PLoS Comput Biol. 2017 Dec 4;13(12 ):e1005741 - PubMed
  29. Bioinformatics. 2011 Jun 1;27(11):1529-36 - PubMed
  30. Philos Trans R Soc Lond B Biol Sci. 2011 Jan 12;366(1561):9-16 - PubMed
  31. PLoS Comput Biol. 2017 Apr 20;13(4):e1005488 - PubMed
  32. Bioinformatics. 2016 Feb 1;32(3):465-8 - PubMed
  33. J Theor Biol. 2003 Jul 7;223(1):1-18 - PubMed
  34. PLoS Comput Biol. 2015 Jun 23;11(5):e1004338 - PubMed
  35. PLoS One. 2013 Jun 21;8(6):e66031 - PubMed
  36. Nat Protoc. 2009;4(8):1184-91 - PubMed
  37. PLoS One. 2012;7(10):e46798 - PubMed
  38. Bioinformatics. 2006 Jul 15;22(14):e124-31 - PubMed
  39. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Mar;79(3 Pt 2):036108 - PubMed
  40. Nat Rev Mol Cell Biol. 2008 Oct;9(10):770-80 - PubMed
  41. Best Pract Res Clin Endocrinol Metab. 2004 Sep;18(3):393-406 - PubMed
  42. Cell. 1992 Nov 27;71(5):765-76 - PubMed
  43. Nat Rev Genet. 2004 Nov;5(11):826-37 - PubMed
  44. Nucleic Acids Res. 2011 Jan;39(Database issue):D561-8 - PubMed
  45. Cell Cycle. 2008 Mar 1;7(5):556-9 - PubMed
  46. Science. 2007 Apr 27;316(5824):550-1 - PubMed

Publication Types