Display options
Share it on

Front Microbiol. 2017 Dec 22;8:2619. doi: 10.3389/fmicb.2017.02619. eCollection 2017.

Functional Stability and Community Dynamics during Spring and Autumn Seasons Over 3 Years in Camargue Microbial Mats.

Frontiers in microbiology

Mercedes Berlanga, Montserrat Palau, Ricardo Guerrero

Affiliations

  1. Department of Biology, Environment and Health, Section Microbiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.
  2. Laboratory of Molecular Microbiology and Antimicrobials, Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona - Institut d'Investigació Biomédica de Bellvitge, Barcelona, Spain.
  3. Academia Europaea-Barcelona Knowledge Hub, Barcelona, Spain.

PMID: 29312277 PMCID: PMC5744480 DOI: 10.3389/fmicb.2017.02619

Abstract

Microbial mats are complex biofilms in which the major element cycles are represented at a millimeter scale. In this study, community variability within microbial mats from the Camargue wetlands (Rhone Delta, southern France) were analyzed over 3 years during two different seasons (spring and autumn) and at different layers of the mat (0-2, 2-4, and 4-6 mm). To assess bacterial diversity in the mats, amplicons of the V1-V2 region of the 16S rRNA gene were sequenced. The community's functionality was characterized using two approaches: (i) inferred functionality through 16S rRNA amplicons genes according to PICRUSt, and (ii) a shotgun metagenomic analysis. Based on the reads distinguished, microbial communities were dominated by Bacteria (∼94%), followed by Archaea (∼4%) and Eukarya (∼1%). The major phyla of Bacteria were Proteobacteria, Bacteroidetes, Spirochaetes, Actinobacteria, Firmicutes, and Cyanobacteria, which together represented 70-80% of the total population detected. The phylum Euryarchaeota represented ∼80% of the Archaea identified. These results showed that the total bacterial diversity from the Camargue microbial mats was not significantly affected by seasonal changes at the studied location; however, there were differences among layers, especially between the 0-2 mm layer and the other two layers. PICRUSt and shotgun metagenomic analyses revealed similar general biological processes in all samples analyzed, by season and depth, indicating that different layers were functionally stable, although some taxa changed during the spring and autumn seasons over the 3 years. Several gene families and pathways were tracked with the oxic-anoxic gradient of the layers. Genes directly involved in photosynthesis (KO, KEGG Orthology) were significantly more abundant in the top layer (0-2 mm) than in the lower layers (2-4 and 4-6 mm). In the anoxic layers, the presence of ferredoxins likely reflected the variation of redox reactions required for anaerobic respiration. Sulfatase genes had the highest relative abundance below 2 mm. Finally, chemotaxis signature genes peaked sharply at the oxic/photic and transitional oxic-anoxic boundary. This functional differentiation reflected the taxonomic diversity of the different layers of the mat.

Keywords: 16S rRNA amplicon sequencing; Camargue microbial mats; diversity; functionality; shotgun metagenome

References

  1. ISME J. 2016 Nov;10 (11):2557-2568 - PubMed
  2. J Bacteriol. 2005 May;187(9):3020-7 - PubMed
  3. Appl Environ Microbiol. 2011 Mar;77(6):1925-36 - PubMed
  4. Appl Environ Microbiol. 2005 Mar;71(3):1553-61 - PubMed
  5. Appl Environ Microbiol. 2006 May;72(5):3685-95 - PubMed
  6. Front Microbiol. 2014 Feb 26;5:61 - PubMed
  7. Front Microbiol. 2016 Aug 22;7:1284 - PubMed
  8. Curr Opin Microbiol. 2014 Apr;18:72-7 - PubMed
  9. Extremophiles. 2014 Mar;18(2):311-29 - PubMed
  10. Bioinformatics. 2012 Dec 1;28(23):3150-2 - PubMed
  11. Nat Rev Microbiol. 2012 Jul 16;10(8):538-50 - PubMed
  12. Front Microbiol. 2015 Dec 01;6:1367 - PubMed
  13. Int Microbiol. 2008 Dec;11(4):267-74 - PubMed
  14. Life (Basel). 2014 Dec 29;5(1):25-49 - PubMed
  15. PLoS One. 2012;7(12):e52730 - PubMed
  16. Genome Inform. 2007;18:320-9 - PubMed
  17. Sci Rep. 2017 Apr 24;7(1):1108 - PubMed
  18. Appl Environ Microbiol. 2008 Jan;74(1):329-32 - PubMed
  19. Saline Systems. 2008 Apr 15;4:2 - PubMed
  20. Stand Genomic Sci. 2016 Feb 24;11:17 - PubMed
  21. FEMS Microbiol Ecol. 2004 Dec 27;51(1):55-70 - PubMed
  22. Mol Ecol. 2010 Dec;19(24):5555-65 - PubMed
  23. Microb Ecol. 2008 Jul;56(1):90-100 - PubMed
  24. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 - PubMed
  25. Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21390-5 - PubMed
  26. FEMS Microbiol Ecol. 2014 Nov;90(2):335-50 - PubMed
  27. ISME J. 2013 Jan;7(1):50-60 - PubMed
  28. Nucleic Acids Res. 2014 Jan;42(Database issue):D26-31 - PubMed
  29. Front Microbiol. 2014 Aug 06;5:406 - PubMed
  30. Nat Methods. 2010 May;7(5):335-6 - PubMed
  31. FEMS Microbiol Ecol. 2013 Jan;83(1):74-81 - PubMed
  32. Appl Environ Microbiol. 2009 Apr;75(7):1801-10 - PubMed
  33. Front Microbiol. 2015 Jul 21;6:726 - PubMed
  34. Syst Appl Microbiol. 2010 Oct;33(6):291-9 - PubMed
  35. Appl Environ Microbiol. 2008 Oct;74(20):6444-6 - PubMed
  36. Microb Ecol. 2011 Feb;61(2):264-76 - PubMed
  37. Sci Rep. 2017 Apr 11;7:46160 - PubMed
  38. Microb Ecol. 2007 Oct;54(3):523-31 - PubMed
  39. BMC Bioinformatics. 2012 May 30;13:113 - PubMed
  40. Nat Biotechnol. 2013 Sep;31(9):814-21 - PubMed
  41. Front Microbiol. 2012 Aug 10;3:293 - PubMed
  42. Sci Rep. 2017 Jul 31;7(1):6589 - PubMed
  43. Sci Rep. 2015 Oct 26;5:15607 - PubMed
  44. MBio. 2012 Apr 24;3(3):null - PubMed
  45. Philos Trans R Soc Lond B Biol Sci. 2006 Nov 29;361(1475):1997-2008 - PubMed
  46. Microorganisms. 2016 Jan 05;4(1):null - PubMed
  47. Trends Microbiol. 2005 Sep;13(9):429-38 - PubMed
  48. Environ Microbiol. 2017 Jun;19(6):2405-2421 - PubMed
  49. Front Microbiol. 2016 Jul 06;7:1064 - PubMed
  50. ISME J. 2013 May;7(5):1026-37 - PubMed
  51. ISME J. 2016 Jan;10 (1):183-96 - PubMed
  52. FEMS Microbiol Ecol. 2009 Apr;68(1):46-58 - PubMed
  53. J Bacteriol. 2002 May;184(9):2404-10 - PubMed
  54. Front Microbiol. 2013 Jun 03;4:106 - PubMed
  55. Sci Rep. 2017 Jun 7;7(1):2969 - PubMed
  56. Front Microbiol. 2017 Jun 06;8:943 - PubMed
  57. PLoS One. 2013 Jun 10;8(6):e66662 - PubMed
  58. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 - PubMed
  59. FEMS Microbiol Ecol. 2006 Feb;55(2):195-210 - PubMed
  60. Biochim Biophys Acta. 2008 Dec;1784(12):1873-98 - PubMed
  61. Environ Microbiol. 2017 Mar;19(3):1134-1148 - PubMed
  62. PLoS One. 2016 Apr 07;11(4):e0152400 - PubMed
  63. ISME J. 2011 Aug;5(8):1303-13 - PubMed
  64. Int Microbiol. 2006 Sep;9(3):225-35 - PubMed
  65. Int Microbiol. 2006 Dec;9(4):289-95 - PubMed
  66. Environ Microbiol. 2015 Oct;17(10):3738-53 - PubMed
  67. ISME J. 2016 Jul;10 (7):1669-81 - PubMed
  68. Front Microbiol. 2017 Jun 30;8:1233 - PubMed

Publication Types