Display options
Share it on

Materials (Basel). 2017 Dec 08;10(12). doi: 10.3390/ma10121404.

Edible Scaffolds Based on Non-Mammalian Biopolymers for Myoblast Growth.

Materials (Basel, Switzerland)

Javier Enrione, Jonny J Blaker, Donald I Brown, Caroline R Weinstein-Oppenheimer, Marzena Pepczynska, Yusser Olguín, Elizabeth Sánchez, Cristian A Acevedo

Affiliations

  1. Biopolymer Research and Engineering Lab (BiopREL), Universidad de los Andes, Avenida Monseñor Alvaro del Portillo 12455, Las Condes, Santiago 7550000, Chile. [email protected].
  2. Bio-Active Materials Group, School of Materials, MSS Tower, The University of Manchester, Manchester M13 9PL, UK. [email protected].
  3. Laboratorio de Biología de la Reproducción y del Desarrollo, Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Valparaíso 2340000, Chile. [email protected].
  4. Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Avenida Gran Bretaña 1093, Valparaíso 2340000, Chile. [email protected].
  5. Biopolymer Research and Engineering Lab (BiopREL), Universidad de los Andes, Avenida Monseñor Alvaro del Portillo 12455, Las Condes, Santiago 7550000, Chile. [email protected].
  6. Center for Integrative Medicine and Innovative Science (CIMIS), Universidad Andrés Bello, Echaurren 183, Santiago 8320000, Chile. [email protected].
  7. Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile. [email protected].
  8. Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile. [email protected].
  9. Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile. [email protected].

PMID: 29292759 PMCID: PMC5744339 DOI: 10.3390/ma10121404

Abstract

In vitro meat has recently emerged as a new concept in food biotechnology. Methods to produce in vitro meat generally involve the growth of muscle cells that are cultured on scaffolds using bioreactors. Suitable scaffold design and manufacture are critical to downstream culture and meat production. Most current scaffolds are based on mammalian-derived biomaterials, the use of which is counter to the desire to obviate mammal slaughter in artificial meat production. Consequently, most of the knowledge is related to the design and control of scaffold properties based on these mammalian-sourced materials. To address this, four different scaffold materials were formulated using non-mammalian sources, namely, salmon gelatin, alginate, and additives including gelling agents and plasticizers. The scaffolds were produced using a freeze-drying process, and the physical, mechanical, and biological properties of the scaffolds were evaluated. The most promising scaffolds were produced from salmon gelatin, alginate, agarose, and glycerol, which exhibited relatively large pore sizes (~200 μm diameter) and biocompatibility, permitting myoblast cell adhesion (~40%) and growth (~24 h duplication time). The biodegradation profiles of the scaffolds were followed, and were observed to be less than 25% after 4 weeks. The scaffolds enabled suitable myogenic response, with high cell proliferation, viability, and adequate cell distribution throughout. This system composed of non-mammalian edible scaffold material and muscle-cells is promising for the production of in vitro meat.

Keywords: biopolymer; edible material; in vitro meat; scaffold

Conflict of interest statement

The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and

References

  1. Biotechnol Bioeng. 2004 Jun 20;86(6):672-80 - PubMed
  2. Bioprocess Biosyst Eng. 2015 Apr;38(4):777-85 - PubMed
  3. Int J Biol Macromol. 2012 Jan 1;50(1):294-9 - PubMed
  4. J Transl Med. 2010 Jun 17;8:59 - PubMed
  5. Materials (Basel). 2016 Jun 03;9(6):null - PubMed
  6. Meat Sci. 2013 Nov;95(3):445-50 - PubMed
  7. J Sci Food Agric. 2011 Nov;91(14):2558-65 - PubMed
  8. Bioprocess Biosyst Eng. 2009 Apr;32(3):341-51 - PubMed
  9. Bioprocess Biosyst Eng. 2013 Dec;36(12):1947-56 - PubMed
  10. Ann N Y Acad Sci. 2014 Nov;1328:29-33 - PubMed
  11. Methods Mol Biol. 2011;697:63-70 - PubMed
  12. Meat Sci. 2012 Nov;92(3):297-301 - PubMed
  13. Matrix Biol. 2003 Nov;22(6):459-65 - PubMed
  14. Cell Biol Int. 2011 Feb;35(2):125-33 - PubMed
  15. J Hazard Mater. 2011 May 15;189(1-2):556-63 - PubMed
  16. Eur J Histochem. 2004 Jul-Sep;48(3):223-33 - PubMed
  17. J Biomed Mater Res B Appl Biomater. 2008 Nov;87(2):432-9 - PubMed
  18. Tissue Eng. 2007 Jul;13(7):1431-42 - PubMed
  19. Materials (Basel). 2015 Aug 31;8(9):5744-5794 - PubMed
  20. Int J Biol Macromol. 2017 May;98 :837-846 - PubMed
  21. Biomed Res Int. 2014;2014:302932 - PubMed
  22. Bioengineering (Basel). 2017 Jul 27;4(3):null - PubMed
  23. Tissue Eng. 2007 Nov;13(11):2781-90 - PubMed
  24. J Mech Behav Biomed Mater. 2013 Feb;18:152-66 - PubMed
  25. Meat Sci. 2015 Apr;102:49-58 - PubMed

Publication Types