Display options
Share it on

Front Oncol. 2018 Jan 08;7:321. doi: 10.3389/fonc.2017.00321. eCollection 2017.

Radiobiological Optimization in Lung Stereotactic Body Radiation Therapy: Are We Ready to Apply Radiobiological Models?.

Frontiers in oncology

Marco D'Andrea, Silvia Strolin, Sara Ungania, Alessandra Cacciatore, Vicente Bruzzaniti, Raffaella Marconi, Marcello Benassi, Lidia Strigari

Affiliations

  1. Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome, Italy.

PMID: 29359121 PMCID: PMC5766682 DOI: 10.3389/fonc.2017.00321

Abstract

Lung tumors are often associated with a poor prognosis although different schedules and treatment modalities have been extensively tested in the clinical practice. The complexity of this disease and the use of combined therapeutic approaches have been investigated and the use of high dose-rates is emerging as effective strategy. Technological improvements of clinical linear accelerators allow combining high dose-rate and a more conformal dose delivery with accurate imaging modalities pre- and during therapy. This paper aims at reporting the state of the art and future direction in the use of radiobiological models and radiobiological-based optimizations in the clinical practice for the treatment of lung cancer. To address this issue, a search was carried out on PubMed database to identify potential papers reporting tumor control probability and normal tissue complication probability for lung tumors. Full articles were retrieved when the abstract was considered relevant, and only papers published in English language were considered. The bibliographies of retrieved papers were also searched and relevant articles included. At the state of the art, dose-response relationships have been reported in literature for local tumor control and survival in stage III non-small cell lung cancer. Due to the lack of published radiobiological models for SBRT, several authors used dose constraints and models derived for conventional fractionation schemes. Recently, several radiobiological models and parameters for SBRT have been published and could be used in prospective trials although external validations are recommended to improve the robustness of model predictive capability. Moreover, radiobiological-based functions have been used within treatment planning systems for plan optimization but the advantages of using this strategy in the clinical practice are still under discussion. Future research should be directed toward combined regimens, in order to potentially improve both local tumor control and survival. Indeed, accurate knowledge of the relevant parameters describing tumor biology and normal tissue response is mandatory to correctly address this issue. In this context, the role of medical physicists and the AAPM in the development of radiobiological models is crucial for the progress of developing specific tool for radiobiological-based optimization treatment planning.

Keywords: lung neoplasms; normal tissue complication probability; radiobiological modeling; stereotactic body radiotherapy; tumor control probability

References

  1. J Thorac Oncol. 2011 Dec;6(12):2052-7 - PubMed
  2. Med Phys. 2017 May;44(5):2002-2010 - PubMed
  3. Biomed Res Int. 2013;2013:391021 - PubMed
  4. PLoS One. 2017 Feb 21;12 (2):e0171559 - PubMed
  5. Semin Radiat Oncol. 2016 Apr;26(2):129-34 - PubMed
  6. Semin Radiat Oncol. 2016 Apr;26(2):120-8 - PubMed
  7. Int J Radiat Oncol Biol Phys. 2013 Nov 1;87(3):590-5 - PubMed
  8. Semin Radiat Oncol. 2016 Apr;26(2):140-8 - PubMed
  9. Int J Radiat Biol. 2015 Mar;91(3):294 - PubMed
  10. Med Phys. 2002 Jul;29(7):1447-55 - PubMed
  11. Phys Med. 2016 Apr;32(4):600-6 - PubMed
  12. Int J Radiat Oncol Biol Phys. 2014 Mar 1;88(3):732-8 - PubMed
  13. Acta Oncol. 2011 May;50(4):518-27 - PubMed
  14. PLoS One. 2014 Nov 05;9(11):e112229 - PubMed
  15. Int J Radiat Oncol Biol Phys. 2012 Nov 1;84(3):e379-84 - PubMed
  16. Radiother Oncol. 2016 Oct;121(1):1-8 - PubMed
  17. Med Phys. 2008 Nov;35(11):4911-23 - PubMed
  18. Radiother Oncol. 2016 Mar;118(3):485-91 - PubMed
  19. Med Phys. 2012 Jan;39(1):237-45 - PubMed
  20. Med Phys. 2012 Jul;39(7):4502-14 - PubMed
  21. Int J Radiat Oncol Biol Phys. 2012 May 1;83(1):427-34 - PubMed
  22. Semin Radiat Oncol. 2016 Apr;26(2):135-9 - PubMed
  23. Int J Radiat Oncol Biol Phys. 2014 Feb 1;88(2):254-62 - PubMed
  24. Radiother Oncol. 2009 Dec;93(3):408-13 - PubMed
  25. Sci Transl Med. 2010 Jul 7;2(39):39ra48 - PubMed
  26. Phys Med Biol. 2004 Oct 21;49(20):4811-23 - PubMed
  27. Phys Med Biol. 2004 Oct 21;49(20):4825-35 - PubMed
  28. Clin Lung Cancer. 2017 Mar;18(2):250-254 - PubMed
  29. Phys Med Biol. 2012 Jun 7;57(11):3309-21 - PubMed
  30. Radiat Oncol. 2016 Jan 22;11:10 - PubMed
  31. Radiother Oncol. 2017 May;123(2):176-181 - PubMed
  32. Int J Radiat Oncol Biol Phys. 1998 Aug 1;42(1):1-9 - PubMed
  33. Phys Med Biol. 2016 May 21;61(10 ):3903-13 - PubMed
  34. Int J Radiat Oncol Biol Phys. 2008 Mar 1;70(3):847-52 - PubMed
  35. Radiother Oncol. 2014 Aug;112(2):267-71 - PubMed
  36. Pract Radiat Oncol. 2012 Oct-Dec;2(4):288-95 - PubMed
  37. Med Dosim. 2005 Spring;30(1):12-9 - PubMed
  38. Int J Radiat Oncol Biol Phys. 2001 Feb 1;49(2):327-37 - PubMed
  39. Phys Med Biol. 2008 Nov 21;53(22):6345-62 - PubMed
  40. Acta Oncol. 2015;54(9):1592-8 - PubMed
  41. Med Phys. 2008 Dec;35(12):5851-60 - PubMed
  42. Pract Radiat Oncol. 2017 Mar - Apr;7(2):e145-e155 - PubMed
  43. Radiother Oncol. 2009 Jun;91(3):360-8 - PubMed
  44. Radiat Oncol. 2016 May 06;11:67 - PubMed
  45. Med Phys. 2012 Jun;39(6Part17):3811 - PubMed
  46. Semin Radiat Oncol. 2008 Oct;18(4):240-3 - PubMed
  47. Phys Med Biol. 2000 Feb;45(2):441-57 - PubMed
  48. Med Phys. 2012 Mar;39(3):1386-409 - PubMed
  49. Med Phys. 1997 Jan;24(1):103-10 - PubMed
  50. Radiat Oncol. 2014 Jun 30;9:149 - PubMed
  51. Cancer Biol Ther. 2017 Jan 2;18(1):1-3 - PubMed
  52. Radiother Oncol. 2009 Jun;91(3):369-78 - PubMed
  53. Int J Radiat Oncol Biol Phys. 2004 Nov 15;60(4):1241-56 - PubMed
  54. Med Phys. 2003 Mar;30(3):321-4 - PubMed
  55. Semin Radiat Oncol. 2016 Apr;26(2):165-71 - PubMed
  56. Sci Rep. 2015 Dec 11;5:18010 - PubMed
  57. Radiother Oncol. 2013 Oct;109(1):13-20 - PubMed
  58. Med Phys. 2010 Aug;37(8):4078-101 - PubMed
  59. J Radiat Res. 2014 Jan 1;55(1):2-9 - PubMed
  60. Med Phys. 2009 May;36(5):1790-9 - PubMed
  61. Acta Oncol. 2009;48(4):571-7 - PubMed
  62. J Radiosurg SBRT. 2013;2(2):99-104 - PubMed
  63. Lung Cancer. 2014 Apr;84(1):7-12 - PubMed
  64. Phys Med Biol. 2013 Jul 7;58(13):4611-20 - PubMed
  65. Radiother Oncol. 2016 Mar;118(3):528-34 - PubMed
  66. Radiother Oncol. 2010 Oct;97(1):65-70 - PubMed
  67. Radiother Oncol. 2009 Jun;91(3):307-13 - PubMed
  68. Acta Oncol. 2010 Nov;49(8):1304-14 - PubMed
  69. Phys Med. 2015 Feb;31(1):1-8 - PubMed
  70. Med Phys. 2012 Jun;39(6Part24):3908 - PubMed
  71. Int J Radiat Oncol Biol Phys. 2010 Jul 1;77(3):903-9 - PubMed

Publication Types