Display options
Share it on

Genes (Basel). 2018 Jan 23;9(2). doi: 10.3390/genes9020028.

Proteomic Analysis of Methanonatronarchaeum thermophilum AMET1, a Representative of a Putative New Class of Euryarchaeota, "Methanonatronarchaeia".

Genes

Manuel Ferrer, Dimitry Y Sorokin, Yuri I Wolf, Sergio Ciordia, María C Mena, Rafael Bargiela, Eugene V Koonin, Kira S Makarova

Affiliations

  1. Institute of Catalysis, CSIC, 28049 Madrid, Spain. [email protected].
  2. Winogradsky Institute of Microbiology, Research Centre for Biotechnology, Russian Academy of Sciences, Prospect 60-let Octyabrya 7/2, 117312 Moscow, Russia. [email protected].
  3. Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands. [email protected].
  4. National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA. [email protected].
  5. Proteomics Facility, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain. [email protected].
  6. Proteomics Facility, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain. [email protected].
  7. Institute of Catalysis, CSIC, 28049 Madrid, Spain. [email protected].
  8. National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA. [email protected].
  9. National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA. [email protected].

PMID: 29360740 PMCID: PMC5852551 DOI: 10.3390/genes9020028

Abstract

The recently discovered Methanonatronarchaeia are extremely halophilic and moderately thermophilic methyl-reducing methanogens representing a novel class-level lineage in the phylum Euryarchaeota related to the class Halobacteria. Here we present a detailed analysis of 1D-nano liquid chromatography-electrospray ionization tandem mass spectrometry data obtained for "Methanonatronarchaeum thermophilum" AMET1 grown in different physiological conditions, including variation of the growth temperature and substrates. Analysis of these data allows us to refine the current understanding of the key biosynthetic pathways of this triple extremophilic methanogenic euryarchaeon and identify proteins that are likely to be involved in its response to growth condition changes.

Keywords: Methanonatronarchaeia; genomics; halophiles; methanogenesis; proteomics

Conflict of interest statement

The authors declare no conflicts of interest.

References

  1. Appl Environ Microbiol. 2003 Apr;69(4):2365-71 - PubMed
  2. J Mol Biol. 2001 Jan 19;305(3):567-80 - PubMed
  3. Nature. 2015 Jun 25;522(7557):502-6 - PubMed
  4. J Bacteriol. 2007 Aug;189(15):5738-48 - PubMed
  5. J Proteome Res. 2010 Feb 5;9(2):653-63 - PubMed
  6. J Bacteriol. 2005 Sep;187(17):6046-57 - PubMed
  7. Science. 2000 Aug 11;289(5481):905-20 - PubMed
  8. Mol Cell. 2010 Oct 22;40(2):253-66 - PubMed
  9. Nat Commun. 2012;3:1328 - PubMed
  10. Environ Microbiol. 2007 Oct;9(10):2603-21 - PubMed
  11. Mol Microbiol. 2016 Feb;99(4):674-85 - PubMed
  12. Nucleic Acids Res. 2015 Jul 1;43(W1):W389-94 - PubMed
  13. Methods Mol Biol. 2014;1156:213-22 - PubMed
  14. ISME J. 2017 Nov;11(11):2407-2425 - PubMed
  15. Life (Basel). 2015 Mar 10;5(1):818-40 - PubMed
  16. Arch Biochem Biophys. 2013 Dec;540(1-2):70-81 - PubMed
  17. Methods Enzymol. 2005;397:428-42 - PubMed
  18. Genome Biol Evol. 2013;5(10):1769-80 - PubMed
  19. Int J Syst Evol Microbiol. 2015 Oct;65(10):3739-45 - PubMed
  20. Nat Struct Mol Biol. 2013 Jan;20(1):23-8 - PubMed
  21. PLoS One. 2011;6(8):e24309 - PubMed
  22. Virology. 2006 Jun 20;350(1):228-39 - PubMed
  23. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 - PubMed
  24. Curr Opin Microbiol. 2011 Jun;14(3):342-9 - PubMed
  25. Environ Microbiol. 2002 Nov;4(11):758-63 - PubMed
  26. EMBO J. 1991 Jul;10(7):1711-22 - PubMed
  27. Environ Microbiol. 2012 Jan;14(1):268-81 - PubMed
  28. Chembiochem. 2003 Apr 4;4(4):333-5 - PubMed
  29. Biochemistry. 2013 Jun 4;52(22):3807-17 - PubMed
  30. FEBS J. 2011 May;278(10):1634-42 - PubMed
  31. OMICS. 2014 Jan;18(1):65-80 - PubMed
  32. J Bacteriol. 2011 Oct;193(19):5412-9 - PubMed
  33. Environ Microbiol. 2017 Jun;19(6):2210-2227 - PubMed
  34. Nature. 2011 Nov 27;481(7379):98-101 - PubMed
  35. Genome Biol Evol. 2016 Jun 13;8(6):1706-11 - PubMed
  36. FEMS Microbiol Ecol. 2015 Apr;91(4):null - PubMed
  37. Environ Microbiol. 2016 Feb;18(2):692-707 - PubMed
  38. FEMS Microbiol Lett. 2003 Oct 10;227(1):17-23 - PubMed
  39. Annu Rev Microbiol. 2013;67:437-57 - PubMed
  40. Gene. 2003 Aug 14;313:17-42 - PubMed
  41. J Biol Chem. 2003 Jan 3;278(1):18-26 - PubMed
  42. Arch Biochem Biophys. 2017 Oct 15;632:209-221 - PubMed
  43. Genetika. 1992 Dec;28(12):5-17 - PubMed
  44. Extremophiles. 2000 Dec;4(6):321-31 - PubMed
  45. Mol Cell Proteomics. 2006 May;5(5):868-81 - PubMed
  46. Biol Direct. 2012 Dec 14;7:46 - PubMed
  47. Front Microbiol. 2017 Aug 22;8:1597 - PubMed
  48. Environ Microbiol. 2016 Sep;18(9):2810-24 - PubMed
  49. Nat Microbiol. 2017 May 30;2:17081 - PubMed
  50. ISME J. 2017 Jul;11(7):1511-1520 - PubMed
  51. Biochemistry. 2004 Jun 15;43(23):7618-27 - PubMed
  52. Genome Biol Evol. 2017 Oct 1;9(10 ):2791-2811 - PubMed
  53. Mol Microbiol. 2003 Apr;48(1):143-56 - PubMed
  54. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 - PubMed
  55. Front Biosci. 2007 Jan 01;12:2588-600 - PubMed

Publication Types