Display options
Share it on

J Cardiovasc Dev Dis. 2017 Dec 20;4(4). doi: 10.3390/jcdd4040024.

Hemodynamics Modify Collagen Deposition in the Early Embryonic Chicken Heart Outflow Tract.

Journal of cardiovascular development and disease

Monique Y Rennie, Stephanie Stovall, James P Carson, Michael Danilchik, Kent L Thornburg, Sandra Rugonyi

Affiliations

  1. Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health & Science University, Portland, OR 97239, USA. [email protected].
  2. Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA. [email protected].
  3. Texas Advanced Computing Center, University of Texas, Austin, TX 78758, USA. [email protected].
  4. Integrative Biosciences, Oregon Health & Science University, Portland, OR 97239, USA. [email protected].
  5. Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health & Science University, Portland, OR 97239, USA. [email protected].
  6. Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health & Science University, Portland, OR 97239, USA. [email protected].
  7. Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA. [email protected].

PMID: 29367553 PMCID: PMC5753125 DOI: 10.3390/jcdd4040024

Abstract

Blood flow is critical for normal cardiac development. Hemodynamic stimuli outside of normal ranges can lead to overt cardiac defects, but how early heart tissue remodels in response to altered hemodynamics is poorly understood. This study investigated changes in tissue collagen in response to hemodynamic overload in the chicken embryonic heart outflow tract (OFT) during tubular heart stages (HH18 to HH24, ~24 h). A suture tied around the OFT at HH18 was tightened to constrict the lumen for ~24 h (constriction range at HH24: 15-60%). Expression of fibril collagens I and III and fibril organizing collagens VI and XIV were quantified at the gene and protein levels via qPCR and quantitative immunofluorescence. Collagen I was slightly elevated upstream of the band and in the cushions in banded versus control OFTs. Changes in collagen III were not observed. Collagen VI deposition was elevated downstream of the band, but not overall. Collagen XIV deposition increased throughout the OFT, and strongly correlated to lumen constriction. Interestingly, organization of collagen I fibrils was observed for the tighter banded embryos in regions that also showed increase in collagen XIV deposition, suggesting a potentially key role for collagens I and XIV in the structural adaptation of embryonic heart tissue to hemodynamic overload.

Keywords: cardiac development; congenital heart disease; heart malformation; mechanotransduction; tissue remodeling

Conflict of interest statement

The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and

References

  1. J Mol Cell Cardiol. 2012 Nov;53(5):626-38 - PubMed
  2. Am J Physiol Heart Circ Physiol. 2006 Oct;291(4):H1919-26 - PubMed
  3. Circ Res. 2012 Mar 16;110(6):851-6 - PubMed
  4. Front Physiol. 2014 Aug 21;5:318 - PubMed
  5. Biomech Model Mechanobiol. 2012 Nov;11(8):1187-204 - PubMed
  6. Lab Invest. 2017 Mar;97(3):329-334 - PubMed
  7. Clin Cardiol. 2001 Apr;24(4):325-9 - PubMed
  8. J R Soc Interface. 2014 Nov 6;11(100):20140643 - PubMed
  9. Anat Rec A Discov Mol Cell Evol Biol. 2005 Mar;283(1):193-201 - PubMed
  10. Nature. 2003 Jan 9;421(6919):172-7 - PubMed
  11. Circ Res. 1988 Apr;62(4):757-65 - PubMed
  12. J Am Coll Cardiol. 1989 Jun;13(7):1637-52 - PubMed
  13. PLoS One. 2014 Jun 13;9(6):e99678 - PubMed
  14. J Cell Sci. 1994 Feb;107 ( Pt 2):669-81 - PubMed
  15. Am J Physiol Heart Circ Physiol. 2002 Jun;282(6):H2386-96 - PubMed
  16. Am J Epidemiol. 1985 Jan;121(1):31-6 - PubMed
  17. Dev Dyn. 2000 Apr;217(4):430-9 - PubMed
  18. Methods. 2010 Feb;50(2):70-6 - PubMed
  19. J Mol Histol. 2004 Nov;35(8-9):803-10 - PubMed
  20. J Histochem Cytochem. 1996 Sep;44(9):1043-50 - PubMed
  21. Dev Dyn. 1994 Aug;200(4):321-32 - PubMed
  22. Am J Physiol Heart Circ Physiol. 2017 Mar 1;312(3):H632-H642 - PubMed
  23. Ultrasound Obstet Gynecol. 2009 Jun;33(6):638-44 - PubMed
  24. Mol Cell Biochem. 1996 Oct-Nov;163-164:47-56 - PubMed
  25. Matrix Biol. 2004 Jan;22(7):595-601 - PubMed
  26. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1852-6 - PubMed
  27. Dev Dyn. 2005 May;233(1):122-9 - PubMed
  28. J Am Coll Cardiol. 2001 Apr;37(5):1443-9 - PubMed
  29. Exp Cell Res. 1996 Aug 1;226(2):302-15 - PubMed
  30. J Biol Chem. 2009 Mar 27;284(13):8427-38 - PubMed
  31. Dev Dyn. 1998 Mar;211(3):248-55 - PubMed
  32. J Cardiovasc Dev Dis. 2016 Mar;3(1): - PubMed
  33. Circ Res. 1990 Dec;67(6):1474-80 - PubMed
  34. Circ Res. 2007 May 25;100(10):1503-11 - PubMed
  35. Biomech Model Mechanobiol. 2016 Jun;15(3):723-43 - PubMed
  36. Matrix Biol. 1995 Dec;14(9):743-51 - PubMed
  37. Am J Physiol Heart Circ Physiol. 2013 Aug 1;305(3):H386-96 - PubMed
  38. Fed Proc. 1981 May 15;40(7):2042-7 - PubMed
  39. Front Physiol. 2014 Jun 17;5:225 - PubMed
  40. Nat Commun. 2016 May 25;7:11646 - PubMed
  41. Anat Rec. 1999 Feb 1;254(2):238-52 - PubMed
  42. Am J Physiol. 1989 Jul;257(1 Pt 2):H55-61 - PubMed
  43. J Am Coll Cardiol. 2011 Nov 15;58(21):2241-7 - PubMed
  44. Front Physiol. 2017 Feb 08;8:56 - PubMed
  45. Dev Dyn. 1992 Dec;195(4):231-72 - PubMed
  46. J Cardiovasc Dev Dis. 2015;2(2):108-124 - PubMed
  47. Cardiovasc Res. 1999 Jan;41(1):87-99 - PubMed
  48. Circ Res. 1997 Apr;80(4):473-81 - PubMed
  49. Front Physiol. 2014 Aug 01;5:287 - PubMed
  50. Biochem J. 1989 Nov 1;263(3):709-13 - PubMed
  51. Anat Rec A Discov Mol Cell Evol Biol. 2003 Dec;275(2):1109-16 - PubMed
  52. Methods. 2010 Feb;50(2):85-95 - PubMed
  53. Dev Dyn. 2009 May;238(5):1052-63 - PubMed
  54. Dev Biol. 2013 Feb 15;374(2):345-56 - PubMed
  55. J Biol Chem. 2013 Mar 8;288(10):6777-87 - PubMed

Publication Types

Grant support