Display options
Share it on

J Cardiovasc Dev Dis. 2016 Jan 21;3(1). doi: 10.3390/jcdd3010002.

Segregation of Central Ventricular Conduction System Lineages in Early SMA+ Cardiomyocytes Occurs Prior to Heart Tube Formation.

Journal of cardiovascular development and disease

Caroline Choquet, Laetitia Marcadet, Sabrina Beyer, Robert G Kelly, Lucile Miquerol

Affiliations

  1. Aix-Marseille Université, CNRS UMR 7288, Developmental Biology Institute of Marseille, Campus de Luminy Case 907, 13288 Marseille Cedex 9, France. [email protected].
  2. Aix-Marseille Université, CNRS UMR 7288, Developmental Biology Institute of Marseille, Campus de Luminy Case 907, 13288 Marseille Cedex 9, France. [email protected].
  3. Aix-Marseille Université, CNRS UMR 7288, Developmental Biology Institute of Marseille, Campus de Luminy Case 907, 13288 Marseille Cedex 9, France. [email protected].
  4. Aix-Marseille Université, CNRS UMR 7288, Developmental Biology Institute of Marseille, Campus de Luminy Case 907, 13288 Marseille Cedex 9, France. [email protected].
  5. Aix-Marseille Université, CNRS UMR 7288, Developmental Biology Institute of Marseille, Campus de Luminy Case 907, 13288 Marseille Cedex 9, France. [email protected].

PMID: 29367554 PMCID: PMC5715695 DOI: 10.3390/jcdd3010002

Abstract

The cardiac conduction system (CCS) transmits electrical activity from the atria to the ventricles to coordinate heartbeats. Atrioventricular conduction diseases are often associated with defects in the central ventricular conduction system comprising the atrioventricular bundle (AVB) and right and left branches (BBs). Conducting and contractile working myocytes share common cardiomyogenic progenitors, however the time at which the CCS lineage becomes specified is unclear. In order to study the fate and the contribution to the CCS of cardiomyocytes during early heart tube formation, we performed a genetic lineage analysis using a

Keywords: atrioventricular bundle; bundle branches; cardiac conduction system; cardiac development; clonal analysis; fate mapping; heart tube; smooth muscle actin

References

  1. Nat Genet. 1999 Jan;21(1):70-1 - PubMed
  2. Anat Rec. 1992 Jan;232(1):97-111 - PubMed
  3. Dev Cell. 2004 May;6(5):685-98 - PubMed
  4. Genesis. 2010 Jul;48(7):457-63 - PubMed
  5. Novartis Found Symp. 2003;250:6-17; discussion 18-24, 276-9 - PubMed
  6. Wiley Interdiscip Rev Dev Biol. 2013 Jan-Feb;2(1):17-29 - PubMed
  7. Curr Top Dev Biol. 2012;100:33-65 - PubMed
  8. Pediatr Cardiol. 2009 Jul;30(5):580-7 - PubMed
  9. Cardiovasc Res. 2011 Jul 15;91(2):232-42 - PubMed
  10. Dev Biol. 2007 Apr 1;304(1):286-96 - PubMed
  11. Anat Rec. 1997 Apr;247(4):512-20 - PubMed
  12. Circ Res. 2013 Aug 2;113(4):399-407 - PubMed
  13. Anat Rec A Discov Mol Cell Evol Biol. 2004 Oct;280(2):934-9 - PubMed
  14. BMC Dev Biol. 2001;1:4 - PubMed
  15. Dev Cell. 2003 Dec;5(6):877-89 - PubMed
  16. Circ Res. 1998 Apr 6;82(6):629-44 - PubMed
  17. Circ Res. 2010 Jul 9;107(1):153-61 - PubMed
  18. Cell. 2010 Oct 1;143(1):134-44 - PubMed
  19. Anat Rec A Discov Mol Cell Evol Biol. 2003 Apr;271(2):303-14 - PubMed
  20. Genesis. 2009 Jan;47(1):14-8 - PubMed
  21. Nat Rev Genet. 2005 Nov;6(11):826-35 - PubMed
  22. Circ Res. 2009 Jun 5;104(11):1267-74 - PubMed
  23. Dev Dyn. 2013 Jun;242(6):665-77 - PubMed
  24. Dev Biol. 1982 Jan;89(1):25-40 - PubMed
  25. Circ Res. 2003 Feb 7;92(2):133-5 - PubMed
  26. Elife. 2014 Oct 08;3:null - PubMed
  27. Trends Cardiovasc Med. 2015 Jan;25(1):1-9 - PubMed
  28. Nat Cell Biol. 2013 Sep;15(9):1098-106 - PubMed
  29. J Cell Biol. 1988 Dec;107(6 Pt 2):2575-86 - PubMed
  30. Cardiovasc Res. 2004 Jul 1;63(1):77-86 - PubMed
  31. Circ Arrhythm Electrophysiol. 2009 Apr;2(2):195-207 - PubMed

Publication Types