Display options
Share it on

Curr Opin Toxicol. 2017 Oct;6:60-70. doi: 10.1016/j.cotox.2017.09.004. Epub 2017 Sep 28.

Developmental Lead and/or Prenatal Stress Exposures Followed by Different Types of Behavioral Experience Result in the Divergence of Brain Epigenetic Profiles in a Sex, Brain Region, and Time-Dependent Manner: Implications for Neurotoxicology.

Current opinion in toxicology

Deborah A Cory-Slechta, Marissa Sobolewski, G Varma, J S Schneider

Affiliations

  1. Department of Environmental Medicine, University of Rochester Medical School, Rochester, NY.
  2. Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA.

PMID: 29430559 PMCID: PMC5802340 DOI: 10.1016/j.cotox.2017.09.004

Abstract

Over a lifetime, early developmental exposures to neurocognitive risk factors, such as lead (Pb) exposures and prenatal stress (PS), will be followed by multiple varied behavioral experiences. Pb, PS and behavioral experience can each influence brain epigenetic profiles. Our recent studies show a greater level of complexity, however, as all three factors interact within each sex to generate differential adult variation in global post-translational histone modifications (PTHMs), which may result in fundamentally different consequences for life-long learning and behavioral function. We have reported that PTHM profiles differ by sex, brain region and time point of measurement following developmental exposures to Pb±PS, resulting in different profiles for each unique combination of these parameters. Imposing differing behavioral experience following developmental Pb±PS results in additional divergence of PTHM profiles, again in a sex, brain region and time-dependent manner, further increasing complexity. Such findings underscore the need to link highly localized and variable epigenetic changes along single genes to the highly-integrated brain functional connectome that is ultimately responsible for governing behavioral function. Here we advance the idea that increased understanding may be achieved through iterative reductionist and holistic approaches. Implications for experimental design of animal studies of developmental exposures to neurotoxicants include the necessity of a 'no behavioral experience' group, given that epigenetic changes in response to behavioral testing can confound effects of the neurotoxicant itself. They also suggest the potential utility of the inclusion of salient behavioral experiences as a potential effect modifier in epidemiological studies.

Keywords: behavioral experience; connectome; epigenetics; frontal cortex; hippocampus; lead; stress

References

  1. Environ Health Perspect. 2005 Jul;113(7):894-9 - PubMed
  2. Neurotoxicology. 2017 Sep;62:207-217 - PubMed
  3. Neuroimage. 2014 Jan 1;84:245-53 - PubMed
  4. J Child Psychol Psychiatry. 2011 Apr;52(4):356-67 - PubMed
  5. Toxicol Appl Pharmacol. 2009 Jan 1;234(1):117-27 - PubMed
  6. Brain Res. 1996 Oct 14;736(1-2):125-34 - PubMed
  7. Neurotoxicology. 2016 May;54:65-71 - PubMed
  8. Neurotoxicology. 1996 Summer;17(2):445-57 - PubMed
  9. Neuropsychopharmacology. 2010 Dec;35(13):2521-37 - PubMed
  10. Pediatrics. 2005 Jul;116(1):144-52 - PubMed
  11. J Pharmacol Exp Ther. 1998 Aug;286(2):794-805 - PubMed
  12. Eur Neuropsychopharmacol. 2013 Oct;23(10):1226-46 - PubMed
  13. Acad Pediatr. 2016 Apr;16(3):233-9 - PubMed
  14. PLoS One. 2012;7(1):e30148 - PubMed
  15. J Child Psychol Psychiatry. 2015 Mar;56(3):299-320 - PubMed
  16. Alcohol Clin Exp Res. 2013 Apr;37(4):616-23 - PubMed
  17. Am J Psychiatry. 2017 Dec 1;174(12 ):1185-1194 - PubMed
  18. Dev Psychopathol. 2016 Nov;28(4pt2):1285-1304 - PubMed
  19. J Neurosci. 2009 Oct 14;29(41):12815-23 - PubMed
  20. J Neurosci. 2008 Sep 3;28(36):9055-65 - PubMed
  21. Neurotoxicology. 2015 Jan;46:92-100 - PubMed
  22. Neurotoxicology. 2011 Jan;32(1):83-99 - PubMed
  23. Child Dev. 2010 Jan-Feb;81(1):131-48 - PubMed
  24. Int J Dev Neurosci. 2013 Dec;31(8):804-10 - PubMed
  25. J Child Psychol Psychiatry. 2010 Jan;51(1):58-65 - PubMed
  26. Neurosci Biobehav Rev. 2016 Dec;71:83-100 - PubMed
  27. Hum Brain Mapp. 2017 Jun;38(6):3126-3140 - PubMed
  28. J Neurosci. 2016 Nov 30;36(48):12217-12227 - PubMed
  29. Dev Neuropsychol. 2004;26(1):513-40 - PubMed
  30. J Dev Orig Health Dis. 2014 Aug;5(4):270-80 - PubMed
  31. Sci Transl Med. 2016 Aug 10;8(351):351ra106 - PubMed
  32. Ageing Res Rev. 2012 Jul;11(3):399-403 - PubMed
  33. Neurobiol Stress. 2014 Nov 04;1:100-8 - PubMed
  34. BMC Med Genomics. 2014 Mar 11;7:13 - PubMed
  35. Toxicol Appl Pharmacol. 1998 May;150(1):174-85 - PubMed
  36. EMBO Rep. 2008 Jan;9(1):10-4 - PubMed
  37. Neuropharmacology. 2013 May;68:184-94 - PubMed
  38. Toxicol Appl Pharmacol. 1999 Sep 15;159(3):224-33 - PubMed
  39. Dev Psychopathol. 2017 May;29(2):477-489 - PubMed
  40. Horm Behav. 2011 Mar;59(3):279-89 - PubMed
  41. Nat Rev Neurosci. 2000 Oct;1(1):41-50 - PubMed
  42. Neurotoxicology. 1997;18(3):673-88 - PubMed
  43. Proc Natl Acad Sci U S A. 2010 May 11;107(19):8824-9 - PubMed
  44. Dev Psychobiol. 2016 Apr;58(3):315-27 - PubMed
  45. N Engl J Med. 2003 Apr 17;348(16):1517-26 - PubMed
  46. Nat Neurosci. 2004 Aug;7(8):847-54 - PubMed
  47. Toxicol Appl Pharmacol. 1985 Apr;78(2):291-9 - PubMed
  48. Child Neuropsychol. 2003 Mar;9(1):54-75 - PubMed
  49. Brain Behav. 2016 Oct 03;6(12 ):e00572 - PubMed
  50. Acta Paediatr. 2016 Sep;105(9):1024-35 - PubMed
  51. J Neurosci. 2017 Apr 12;37(15):4103-4116 - PubMed
  52. Epigenomics. 2015;7(4):593-608 - PubMed
  53. J Exp Anal Behav. 2017 Jan;107(1):39-64 - PubMed
  54. Cereb Cortex. 2015 Sep;25(9):3132-43 - PubMed
  55. Behav Brain Res. 2009 Dec 14;205(1):76-87 - PubMed
  56. Neurochem Res. 2013 Nov;38(11):2323-35 - PubMed
  57. Annu Rev Clin Psychol. 2016;12 :331-57 - PubMed
  58. Nucleic Acids Res. 2014 Jan;42(1):109-27 - PubMed
  59. Dev Psychopathol. 2013 Nov;25(4 Pt 2):1489-503 - PubMed
  60. Transl Behav Med. 2016 Mar;6(1):55-62 - PubMed
  61. Genes Brain Behav. 2016 Jan;15(1):155-68 - PubMed
  62. Epigenetics. 2014 Mar;9(3):437-47 - PubMed
  63. Hippocampus. 2000;10(4):438-46 - PubMed
  64. Behav Brain Res. 2008 Sep 1;192(1):70-87 - PubMed
  65. Nat Rev Neurosci. 2016 Aug;17 (8):513-23 - PubMed
  66. Toxicol Lett. 2013 Feb 13;217(1):75-81 - PubMed
  67. Brain Res. 1997 Aug 1;764(1-2):253-6 - PubMed
  68. Toxicol Sci. 2013 Jan;131(1):194-205 - PubMed
  69. Neurotoxicol Teratol. 2001 Nov-Dec;23(6):519-31 - PubMed
  70. Brain Res. 2006 Mar 3;1076(1):49-59 - PubMed
  71. Neurosci Lett. 2011 May 20;495(3):168-72 - PubMed
  72. Neurotoxicol Teratol. 1996 Sep-Oct;18(5):565-75 - PubMed
  73. Front Psychol. 2016 Nov 18;7:1821 - PubMed
  74. Neurosci Biobehav Rev. 2011 Apr;35(5):1291-301 - PubMed
  75. Nat Rev Genet. 2001 May;2(5):383-7 - PubMed
  76. Alzheimers Dement (Amst). 2016 Feb 15;2:123-31 - PubMed
  77. J Am Acad Child Adolesc Psychiatry. 2008 Sep;47(9):1063-72 - PubMed
  78. Biol Psychiatry. 2016 Jan 15;79(2):87-96 - PubMed
  79. Neurotoxicology. 2000 Dec;21(6):1057-68 - PubMed
  80. Nat Rev Neurosci. 2013 Feb;14(2):97-111 - PubMed
  81. Insects. 2014 Jun 10;5(2):377-98 - PubMed

Publication Types

Grant support