Display options
Share it on

Angew Chem Int Ed Engl. 2018 Mar 12;57(12):3128-3131. doi: 10.1002/anie.201712826. Epub 2018 Feb 19.

Isotope Substitution of Promiscuous Alcohol Dehydrogenase Reveals the Origin of Substrate Preference in the Transition State.

Angewandte Chemie (International ed. in English)

Enas M Behiry, J Javier Ruiz-Pernia, Louis Luk, Iñaki Tuñón, Vicent Moliner, Rudolf K Allemann

Affiliations

  1. School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
  2. Departament de Química Física, Universitat de València, 46100, Burjassot, Spain.
  3. Departament de Química Física i Analítica, Universitat Jaume I, 12071, Castelló, Spain.

PMID: 29341402 PMCID: PMC5861672 DOI: 10.1002/anie.201712826

Abstract

The origin of substrate preference in promiscuous enzymes was investigated by enzyme isotope labelling of the alcohol dehydrogenase from Geobacillus stearothermophilus (BsADH). At physiological temperature, protein dynamic coupling to the reaction coordinate was insignificant. However, the extent of dynamic coupling was highly substrate-dependent at lower temperatures. For benzyl alcohol, an enzyme isotope effect larger than unity was observed, whereas the enzyme isotope effect was close to unity for isopropanol. Frequency motion analysis on the transition states revealed that residues surrounding the active site undergo substantial displacement during catalysis for sterically bulky alcohols. BsADH prefers smaller substrates, which cause less protein friction along the reaction coordinate and reduced frequencies of dynamic recrossing. This hypothesis allows a prediction of the trend of enzyme isotope effects for a wide variety of substrates.

© 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Keywords: alcohol dehydrogenase; enzyme catalysis; enzyme models; enzymes; isotope effects

References

  1. J Am Chem Soc. 2014 Oct 22;136(42):14821-33 - PubMed
  2. J Phys Chem A. 2013 Aug 15;117(32):7107-13 - PubMed
  3. J Am Chem Soc. 2013 Feb 20;135(7):2512-7 - PubMed
  4. J Am Chem Soc. 2016 Mar 16;138(10):3403-9 - PubMed
  5. Acc Chem Res. 2002 Jun;35(6):341-9 - PubMed
  6. Int J Biochem Cell Biol. 1996 Feb;28(2):239-46 - PubMed
  7. J Am Chem Soc. 2014 Dec 10;136(49):17317-23 - PubMed
  8. Phys Chem Chem Phys. 2015 Dec 14;17(46):30817-27 - PubMed
  9. J Am Chem Soc. 2014 May 14;136(19):6862-5 - PubMed
  10. Protein Eng. 1998 Oct;11(10):925-30 - PubMed
  11. J Biol Chem. 2013 May 17;288(20):14087-97 - PubMed
  12. J Phys Chem B. 2014 Jun 12;118(23):6049-61 - PubMed
  13. Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14115-20 - PubMed
  14. J Am Chem Soc. 2013 Dec 11;135(49):18689-96 - PubMed
  15. J Am Chem Soc. 2011 Dec 7;133(48):19358-61 - PubMed
  16. Curr Opin Chem Biol. 2014 Aug;21:11-8 - PubMed
  17. J Am Chem Soc. 2016 Dec 21;138(50):16283-16298 - PubMed
  18. J Biol Chem. 2014 Oct 31;289(44):30205-12 - PubMed
  19. J Am Chem Soc. 2013 Feb 20;135(7):2509-11 - PubMed
  20. Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16344-9 - PubMed
  21. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013 Jul;69(Pt 7):730-2 - PubMed
  22. J Gen Microbiol. 1992 May;138(5):987-96 - PubMed
  23. Biochemistry. 2004 May 11;43(18):5266-77 - PubMed
  24. Angew Chem Int Ed Engl. 2018 Mar 12;57(12):3128-3131 - PubMed
  25. Nature. 1999 Jun 3;399(6735):496-9 - PubMed

Publication Types