Display options
Share it on

Oncotarget. 2017 Dec 11;8(68):112184-112198. doi: 10.18632/oncotarget.23097. eCollection 2017 Dec 22.

A Mitochondrial-targeted purine-based HSP90 antagonist for leukemia therapy.

Oncotarget

Kelly G Bryant, Young Chan Chae, Rogelio L Martinez, John C Gordon, Khaled M Elokely, Andrew V Kossenkov, Steven Grant, Wayne E Childers, Magid Abou-Gharbia, Dario C Altieri

Affiliations

  1. Prostate Cancer Discovery and Development Program, The Wistar Institute, Philadelphia, PA, USA.
  2. Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, USA.
  3. Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, Philadelphia, PA, USA.
  4. Department of Pharmaceutical Chemistry, Tanta University, Tanta, Egypt.
  5. Center for System and Computational Biology, The Wistar Institute, Philadelphia, PA, USA.
  6. Department of Medicine and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.

PMID: 29348817 PMCID: PMC5762502 DOI: 10.18632/oncotarget.23097

Abstract

Reprogramming of mitochondrial functions sustains tumor growth and may provide therapeutic opportunities. Here, we targeted the protein folding environment in mitochondria by coupling a purine-based inhibitor of the molecular chaperone Heat Shock Protein-90 (Hsp90), PU-H71 to the mitochondrial-targeting moiety, triphenylphosphonium (TPP). Binding of PU-H71-TPP to ADP-Hsp90, Hsp90 co-chaperone complex or mitochondrial Hsp90 homolog, TRAP1 involved hydrogen bonds, π-π stacking, cation-π contacts and hydrophobic interactions with the surrounding amino acids in the active site. PU-H71-TPP selectively accumulated in mitochondria of tumor cells (17-fold increase in mitochondria/cytosol ratio), whereas unmodified PU-H71 showed minimal mitochondrial localization. Treatment of tumor cells with PU-H71-TPP dissipated mitochondrial membrane potential, inhibited oxidative phosphorylation in sensitive cell types, and reduced ATP production, resulting in apoptosis and tumor cell killing. Unmodified PU-H71 had no effect. Bioinformatics analysis identified a "mitochondrial Hsp90" signature in Acute Myeloid Leukemia (AML), which correlates with worse disease outcome. Accordingly, inhibition of mitochondrial Hsp90s killed primary and cultured AML cells, with minimal effects on normal peripheral blood mononuclear cells. These data demonstrate that directing Hsp90 inhibitors with different chemical scaffolds to mitochondria is feasible and confers improved anticancer activity. A potential "addiction" to mitochondrial Hsp90s may provide a new therapeutic target in AML.

Keywords: Hsp90; acute myeloid leukemia; chaperone; metabolism; mitochondria

Conflict of interest statement

CONFLICTS OF INTEREST The authors declare that they have no conflicts of interest with the contents of this article.

References

  1. J Med Chem. 2006 Oct 19;49(21):6177-96 - PubMed
  2. Cancer Cell. 2011 Nov 15;20(5):674-88 - PubMed
  3. J Chem Theory Comput. 2010 May 11;6(5):1509-19 - PubMed
  4. J Biol Chem. 2016 Nov 25;291(48):25247-25254 - PubMed
  5. Cancer Cell. 2012 Sep 11;22(3):331-44 - PubMed
  6. Cancer Cell. 2013 Jun 10;23 (6):811-25 - PubMed
  7. Clin Cancer Res. 2012 Jan 1;18(1):23-32 - PubMed
  8. Clin Cancer Res. 2016 Feb 1;22(3):540-5 - PubMed
  9. Genes Dev. 2012 Sep 1;26(17):1926-44 - PubMed
  10. J Clin Invest. 2011 Apr;121(4):1349-60 - PubMed
  11. Oncotarget. 2017 Mar 28;8(13):21229-21240 - PubMed
  12. J Am Chem Soc. 2015 Apr 8;137(13):4358-67 - PubMed
  13. Blood. 2017 May 11;129(19):2657-2666 - PubMed
  14. Cell. 2006 Oct 20;127(2):329-40 - PubMed
  15. Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):18297-302 - PubMed
  16. Cell Rep. 2014 Aug 7;8(3):671-7 - PubMed
  17. Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5 - PubMed
  18. Nature. 2016 Jun 30;534(7609):710-3 - PubMed
  19. Nat Cell Biol. 2014 Oct;16(10 ):992-1003, 1-15 - PubMed
  20. Nat Rev Drug Discov. 2017 Apr;16(4):273-284 - PubMed
  21. Pharmacol Res. 2015 Sep;99:202-16 - PubMed
  22. Cell. 2016 Jul 28;166(3):555-566 - PubMed
  23. Science. 2016 Jun 24;352(6293):1542-7 - PubMed
  24. Clin Cancer Res. 2012 Jan 1;18(1):64-76 - PubMed
  25. Nat Commun. 2013;4:2139 - PubMed
  26. J Clin Invest. 2015 Feb;125(2):687-98 - PubMed
  27. Cancer Cell. 2012 Mar 20;21(3):297-308 - PubMed
  28. Leukemia. 2007 Jun;21(6):1198-203 - PubMed
  29. Cancer Res. 2016 Oct 15;76(20):5914-5920 - PubMed
  30. Mol Cell. 2016 Mar 3;61(5):667-676 - PubMed
  31. J Chem Inf Model. 2013 Jul 22;53(7):1531-42 - PubMed
  32. J Comput Chem. 2011 Oct;32(13):2800-9 - PubMed
  33. Cell. 2007 Oct 19;131(2):257-70 - PubMed
  34. Cancer Discov. 2017 Jul;7(7):716-735 - PubMed
  35. Mol Cell. 2014 Jan 23;53(2):330-43 - PubMed
  36. Nat Rev Drug Discov. 2010 Jun;9(6):447-64 - PubMed
  37. Int J Biochem Cell Biol. 2014 May;50:10-23 - PubMed
  38. J Clin Invest. 2009 Mar;119(3):454-64 - PubMed
  39. J Clin Invest. 2013 Jul;123(7):2907-20 - PubMed
  40. J Med Chem. 2006 Jan 12;49(1):381-90 - PubMed

Publication Types

Grant support