Display options
Share it on

Front Hum Neurosci. 2018 Jan 09;11:650. doi: 10.3389/fnhum.2017.00650. eCollection 2017.

Categorization for Faces and Tools-Two Classes of Objects Shaped by Different Experience-Differs in Processing Timing, Brain Areas Involved, and Repetition Effects.

Frontiers in human neuroscience

Vladimir Kozunov, Anastasia Nikolaeva, Tatiana A Stroganova

Affiliations

  1. MEG Centre, Moscow State University of Psychology and Education, Moscow, Russia.

PMID: 29379426 PMCID: PMC5770807 DOI: 10.3389/fnhum.2017.00650

Abstract

The brain mechanisms that integrate the separate features of sensory input into a meaningful percept depend upon the prior experience of interaction with the object and differ between categories of objects. Recent studies using representational similarity analysis (RSA) have characterized either the spatial patterns of brain activity for different categories of objects or described how category structure in neuronal representations emerges in time, but never simultaneously. Here we applied a novel, region-based, multivariate pattern classification approach in combination with RSA to magnetoencephalography data to extract activity associated with qualitatively distinct processing stages of visual perception. We asked participants to name what they see whilst viewing bitonal visual stimuli of two categories predominantly shaped by either value-dependent or sensorimotor experience, namely faces and tools, and meaningless images. We aimed to disambiguate the spatiotemporal patterns of brain activity between the meaningful categories and determine which differences in their processing were attributable to either perceptual categorization

Keywords: feature binding; magnetoencephalography; repetition effects; representational similarity analysis; sensorimotor associations; value; visual perception; visual processing stages

References

  1. J Neurosci. 2016 Jan 13;36(2):432-44 - PubMed
  2. J Neurophysiol. 2006 Jun;95(6):3654-64 - PubMed
  3. Nat Neurosci. 2000 Feb;3(2):191-7 - PubMed
  4. Neuroimage. 2010 Jan 1;49(1):641-55 - PubMed
  5. J Neurophysiol. 2012 Jan;107(2):628-39 - PubMed
  6. PLoS One. 2011;6(11):e24408 - PubMed
  7. Cereb Cortex. 2016 Aug;26(8):3563-3579 - PubMed
  8. Comput Intell Neurosci. 2011;2011:156869 - PubMed
  9. Psychol Bull. 2014 Sep;140(5):1281-302 - PubMed
  10. J Cogn Neurosci. 2000;12 Suppl 2:35-51 - PubMed
  11. PLoS One. 2014 Oct 01;9(10):e109070 - PubMed
  12. J Neurosci. 2013 May 1;33(18):7691-9 - PubMed
  13. Neuroimage. 2008 Sep 1;42(3):1056-68 - PubMed
  14. Nat Neurosci. 2000 Aug;3(8):759-63 - PubMed
  15. Vision Res. 2010 Dec;50(24):2633-41 - PubMed
  16. J Cogn Neurosci. 2003 Jan 1;15(1):111-35 - PubMed
  17. Neuroimage. 2016 May 15;132:59-70 - PubMed
  18. Br J Psychol. 1986 Aug;77 ( Pt 3):305-27 - PubMed
  19. Neuroimage. 2013 Dec;83:1063-73 - PubMed
  20. Neuropsychologia. 2007 Jan 7;45(1):75-92 - PubMed
  21. PLoS Biol. 2016 Mar 08;14(3):e1002400 - PubMed
  22. Cogn Psychol. 1984 Apr;16(2):243-75 - PubMed
  23. Front Hum Neurosci. 2011 Jan 10;4:225 - PubMed
  24. Trends Cogn Sci. 2007 May;11(5):211-8 - PubMed
  25. J Neurosci. 2014 Jan 29;34(5):1738-47 - PubMed
  26. Neuropsychologia. 2002;40(2):212-22 - PubMed
  27. J Cogn Neurosci. 2012 Apr;24(4):868-77 - PubMed
  28. Neurosci Lett. 2003 May 15;342(1-2):101-4 - PubMed
  29. Comput Intell Neurosci. 2011;2011:879716 - PubMed
  30. Curr Biol. 2002 Jun 25;12(12):964-72 - PubMed
  31. Brain Res. 2006 Dec 6;1123(1):179-87 - PubMed
  32. Neuropsychologia. 2014 Aug;61:65-79 - PubMed
  33. Cortex. 2007 Apr;43(3):461-8 - PubMed
  34. Neural Netw. 1998 Oct;11(7-8):1277-1303 - PubMed
  35. Brain Res. 2008 Dec 9;1244:103-12 - PubMed
  36. Nat Neurosci. 2014 Mar;17(3):455-62 - PubMed
  37. Neuropsychologia. 2014 Oct;63:135-44 - PubMed
  38. PLoS Comput Biol. 2014 Apr 17;10(4):e1003553 - PubMed
  39. Comput Intell Neurosci. 2011;2011:852961 - PubMed
  40. Neuron. 1993 Feb;10(2):115-25 - PubMed
  41. J Neurosci. 2011 Dec 7;31(49):18119-29 - PubMed
  42. Nature. 2001 May 17;411(6835):305-9 - PubMed
  43. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):129-33 - PubMed
  44. PLoS One. 2013 Sep 06;8(9):e71408 - PubMed
  45. Front Psychol. 2012 Dec 12;3:553 - PubMed
  46. Front Syst Neurosci. 2008 Nov 24;2:4 - PubMed
  47. Neuroimage. 2000 Oct;12(4):478-84 - PubMed
  48. Neuroimage. 2016 Nov 15;142:27-42 - PubMed
  49. Neuroscientist. 2006 Jun;12(3):211-31 - PubMed
  50. Atten Percept Psychophys. 2010 Oct;72(7):1865-74 - PubMed
  51. Brain Stimul. 2016 Jul-Aug;9(4):594-600 - PubMed
  52. Trends Neurosci. 1992 Jan;15(1):20-5 - PubMed
  53. Front Neurosci. 2014 May 23;8:116 - PubMed
  54. Front Psychol. 2014 Jun 24;5:636 - PubMed
  55. Front Neurosci. 2015 Apr 21;9:107 - PubMed
  56. Brain Res. 2009 Feb 13;1254:84-98 - PubMed
  57. Trends Cogn Sci. 2000 Jun;4(6):223-233 - PubMed
  58. PLoS Biol. 2007 Oct;5(10):e260 - PubMed
  59. J Cogn Neurosci. 2012 Aug;24(8):1766-78 - PubMed
  60. Neuroimage. 1999 Feb;9(2):179-94 - PubMed
  61. Cereb Cortex. 2015 Oct;25(10):3602-12 - PubMed
  62. J Vis. 2013 Aug 01;13(10):null - PubMed
  63. Methods Find Exp Clin Pharmacol. 2002;24 Suppl D:5-12 - PubMed
  64. Hum Brain Mapp. 2009 Aug;30(8):2530-41 - PubMed
  65. Cereb Cortex. 1999 Jul-Aug;9(5):415-30 - PubMed
  66. Percept Psychophys. 2003 Oct;65(7):1136-44 - PubMed
  67. Neuroimage. 2016 Mar;128:44-53 - PubMed
  68. Phys Rev A Gen Phys. 1988 Jul 1;38(1):364-374 - PubMed

Publication Types

Grant support