Display options
Share it on

Proteomes. 2018 Jan 31;6(1). doi: 10.3390/proteomes6010007.

Disseminating Metaproteomic Informatics Capabilities and Knowledge Using the Galaxy-P Framework.

Proteomes

Clemens Blank, Caleb Easterly, Bjoern Gruening, James Johnson, Carolin A Kolmeder, Praveen Kumar, Damon May, Subina Mehta, Bart Mesuere, Zachary Brown, Joshua E Elias, W Judson Hervey, Thomas McGowan, Thilo Muth, Brook Nunn, Joel Rudney, Alessandro Tanca, Timothy J Griffin, Pratik D Jagtap

Affiliations

  1. Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg im Breisgau, Germany. [email protected].
  2. Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA. [email protected].
  3. Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg im Breisgau, Germany. [email protected].
  4. Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA. [email protected].
  5. Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland. [email protected].
  6. Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA. [email protected].
  7. Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. [email protected].
  8. Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA. [email protected].
  9. Computational Biology Group, Ghent University, Krijgslaan 281, B-9000 Ghent, Belgium. [email protected].
  10. Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA. [email protected].
  11. Department of Chemical & Systems Biology, Stanford University, Stanford, CA 94305, USA. [email protected].
  12. Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC 20375, USA. [email protected].
  13. Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA. [email protected].
  14. Bioinformatics Unit (MF1), Department for Methods Development and Research Infrastructure, Robert Koch Institute, 13353 Berlin, Germany. [email protected].
  15. Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. [email protected].
  16. Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN 55455, USA. [email protected].
  17. Porto Conte Ricerche Science and Technology Park of Sardinia, 07041 Alghero, Italy. [email protected].
  18. Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA. [email protected].
  19. Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA. [email protected].

PMID: 29385081 PMCID: PMC5874766 DOI: 10.3390/proteomes6010007

Abstract

The impact of microbial communities, also known as the microbiome, on human health and the environment is receiving increased attention. Studying translated gene products (proteins) and comparing metaproteomic profiles may elucidate how microbiomes respond to specific environmental stimuli, and interact with host organisms. Characterizing proteins expressed by a complex microbiome and interpreting their functional signature requires sophisticated informatics tools and workflows tailored to metaproteomics. Additionally, there is a need to disseminate these informatics resources to researchers undertaking metaproteomic studies, who could use them to make new and important discoveries in microbiome research. The Galaxy for proteomics platform (Galaxy-P) offers an open source, web-based bioinformatics platform for disseminating metaproteomics software and workflows. Within this platform, we have developed easily-accessible and documented metaproteomic software tools and workflows aimed at training researchers in their operation and disseminating the tools for more widespread use. The modular workflows encompass the core requirements of metaproteomic informatics: (a) database generation; (b) peptide spectral matching; (c) taxonomic analysis and (d) functional analysis. Much of the software available via the Galaxy-P platform was selected, packaged and deployed through an online metaproteomics "Contribution Fest" undertaken by a unique consortium of expert software developers and users from the metaproteomics research community, who have co-authored this manuscript. These resources are documented on GitHub and freely available through the Galaxy Toolshed, as well as a publicly accessible metaproteomics gateway Galaxy instance. These documented workflows are well suited for the training of novice metaproteomics researchers, through online resources such as the Galaxy Training Network, as well as hands-on training workshops. Here, we describe the metaproteomics tools available within these Galaxy-based resources, as well as the process by which they were selected and implemented in our community-based work. We hope this description will increase access to and utilization of metaproteomics tools, as well as offer a framework for continued community-based development and dissemination of cutting edge metaproteomics software.

Keywords: Galaxy platform; bioinformatics; community development; functional microbiome; mass spectrometry; metaproteomics; software workflow development

Conflict of interest statement

The authors declare no conflict of interest.

References

  1. ISME J. 2017 Feb;11(2):309-314 - PubMed
  2. J Proteome Res. 2015 Mar 6;14(3):1557-65 - PubMed
  3. Appl Environ Microbiol. 2014 Aug;80(16):5043-52 - PubMed
  4. J Proteome Res. 2016 Oct 7;15(10 ):3635-3642 - PubMed
  5. Bioinformatics. 2009 Nov 15;25(22):3045-6 - PubMed
  6. Methods Enzymol. 2013;531:465-85 - PubMed
  7. Proteomics. 2015 Oct;15(20):3585-9 - PubMed
  8. Proteomics. 2015 Oct;15(20):3553-65 - PubMed
  9. Nat Biotechnol. 2015 Jan;33(1):22-4 - PubMed
  10. Bioinformatics. 2014 May 1;30(9):1236-40 - PubMed
  11. Annu Rev Genomics Hum Genet. 2017 Aug 31;18:65-86 - PubMed
  12. Proteomics. 2015 Oct;15(20):3566-79 - PubMed
  13. J Proteome Res. 2014 Dec 5;13(12):5898-908 - PubMed
  14. BMC Genomics. 2016 Aug 16;17 (1):642 - PubMed
  15. Trends Microbiol. 2016 Nov;24(11):887-901 - PubMed
  16. Nat Microbiol. 2016 Oct 10;2:16180 - PubMed
  17. MBio. 2017 Oct 17;8(5):null - PubMed
  18. Proteomics. 2012 Apr;12(7):992-1001 - PubMed
  19. Nucleic Acids Res. 2012 Jan;40(Database issue):D559-64 - PubMed
  20. Proteomics. 2015 Oct;15(20):3439-53 - PubMed
  21. J Proteomics. 2014 Apr 14;101:31-42 - PubMed
  22. Trends Microbiol. 2006 Feb;14(2):92-7 - PubMed
  23. PLoS Comput Biol. 2016 Dec 5;12 (12 ):e1005224 - PubMed
  24. Proteomics. 2015 Oct;15(20):3463-73 - PubMed
  25. PLoS One. 2013 Dec 09;8(12):e82981 - PubMed
  26. J Proteome Res. 2015 Aug 7;14(8):3027-38 - PubMed
  27. PLoS One. 2017 Jan 4;12 (1):e0169563 - PubMed
  28. Trends Microbiol. 2017 Nov 22;:null - PubMed
  29. Front Microbiol. 2016 Apr 20;7:459 - PubMed
  30. Expert Rev Proteomics. 2016 Aug;13(8):757-69 - PubMed
  31. Appl Environ Microbiol. 2007 Feb;73(4):1388-92 - PubMed
  32. Nucleic Acids Res. 2016 Jul 8;44(W1):W3-W10 - PubMed
  33. Proteomics. 2011 Mar;11(5):996-9 - PubMed
  34. J Proteome Res. 2016 Aug 5;15(8):2697-705 - PubMed
  35. Environ Microbiol. 2004 Sep;6(9):911-20 - PubMed
  36. Microbiome. 2017 Jul 10;5(1):72 - PubMed
  37. Nucleic Acids Res. 2009 Jan;37(Database issue):D211-5 - PubMed
  38. Proteomics. 2015 Apr;15(8):1437-42 - PubMed
  39. Microbiome. 2016 Sep 27;4(1):51 - PubMed
  40. Mol Oral Microbiol. 2010 Feb;25(1):38-49 - PubMed
  41. Biotechnol J. 2017 Mar;12 (3): - PubMed
  42. Microbiome. 2017 Jul 14;5(1):79 - PubMed
  43. Anal Bioanal Chem. 2017 Mar;409(9):2327-2339 - PubMed
  44. Microbiome. 2015 Dec 19;3:69 - PubMed
  45. Proteomics. 2015 Oct;15(20):3409-17 - PubMed
  46. Nucleic Acids Res. 2017 Jan 4;45(D1):D353-D361 - PubMed
  47. BMC Genomics. 2011 Jan 05;12:6 - PubMed
  48. Mol Biol Evol. 2017 Aug 1;34(8):2115-2122 - PubMed
  49. J Proteome Res. 2012 Nov 2;11(11):5406-17 - PubMed
  50. PLoS Comput Biol. 2016 Jun 21;12 (6):e1004957 - PubMed
  51. Bioinformatics. 2014 Oct;30(19):2717-22 - PubMed
  52. PLoS One. 2011;6(7):e21800 - PubMed
  53. J Proteomics. 2018 Jan 16;171:11-22 - PubMed
  54. Bioinformatics. 2016 Jun 1;32(11):1746-8 - PubMed
  55. Proteomics. 2013 Apr;13(8):1352-7 - PubMed
  56. Bioinformatics. 2018 Mar 1;34(5):795-802 - PubMed
  57. Nature. 2012 Jun 13;486(7402):215-21 - PubMed
  58. Nucleic Acids Res. 2016 Jan 4;44(D1):D286-93 - PubMed

Publication Types

Grant support