Display options
Share it on

Antioxidants (Basel). 2018 Feb 22;7(2). doi: 10.3390/antiox7020031.

Nanotherapy and Reactive Oxygen Species (ROS) in Cancer: A Novel Perspective.

Antioxidants (Basel, Switzerland)

Peter Brenneisen, Andreas S Reichert

Affiliations

  1. Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany. [email protected].
  2. Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany. [email protected].

PMID: 29470419 PMCID: PMC5836021 DOI: 10.3390/antiox7020031

Abstract

The incidence of numerous types of cancer has been increasing over recent years, representing the second-most frequent cause of death after cardiovascular diseases. Even though, the number of effective anticancer drugs is increasing as well, a large number of patients suffer from severe side effects (e.g., cardiomyopathies) caused by these drugs. This adversely affects the patients' well-being and quality of life. On the molecular level, tumor cells that survive treatment modalities can become chemotherapy-resistant. In addition, adverse impacts on normal (healthy, stromal) cells occur concomitantly. Strategies that minimize these negative impacts on normal cells and which at the same time target tumor cells efficiently are needed. Recent studies suggest that redox-based combinational nanotherapies may represent one option in this direction. Here, we discuss recent advances in the application of nanoparticles, alone or in combination with other drugs, as a promising anticancer tool. Such novel strategies could well minimize harmful side effects and improve patients' health prognoses.

Keywords: cerium oxide; chemotherapeutics; combinational therapy; mitochondria; nanoparticle; reactive oxygen species (ROS); tumor-stroma interaction

Conflict of interest statement

The authors declare no conflict of interest.

References

  1. Mol Cancer Res. 2009 Jan;7(1):79-87 - PubMed
  2. Nanomedicine (Lond). 2017 Jan;12 (1):59-72 - PubMed
  3. J Cell Sci. 2006 Jul 1;119(Pt 13):2727-38 - PubMed
  4. Small. 2009 Dec;5(24):2848-56 - PubMed
  5. Oxid Med Cell Longev. 2015;2015:294303 - PubMed
  6. Cancer Lett. 2017 Feb 28;387:95-105 - PubMed
  7. Antioxid Redox Signal. 2012 Jun 1;16(11):1212-4 - PubMed
  8. Expert Rev Anticancer Ther. 2013 Aug;13(8):907-18 - PubMed
  9. Acc Chem Res. 2014 Apr 15;47(4):1174-85 - PubMed
  10. Redox Biol. 2015;4:1-5 - PubMed
  11. Environ Toxicol Pharmacol. 2014 Jan;37(1):118-33 - PubMed
  12. J Cancer Res Clin Oncol. 2017 Jun 24;:null - PubMed
  13. Chem Soc Rev. 2010 Nov;39(11):4422-32 - PubMed
  14. Cardiovasc Res. 2007 Feb 1;73(3):549-59 - PubMed
  15. Curr Cancer Drug Targets. 2015;15(9):752-68 - PubMed
  16. Aust Prescr. 2015 Jun;38(3):74-8 - PubMed
  17. Science. 1985 Jan 25;227(4685):375-81 - PubMed
  18. Biointerphases. 2016 Nov 02;11(4):04B202 - PubMed
  19. Molecules. 2017 Dec 30;23 (1):null - PubMed
  20. Pharmacol Res. 2018 Jan;127:4-14 - PubMed
  21. Curr Drug Metab. 2015;16(6):412-26 - PubMed
  22. Annu Rev Biochem. 2017 Jun 20;86:715-748 - PubMed
  23. Nat Rev Drug Discov. 2013 Dec;12(12):931-47 - PubMed
  24. Environ Sci Nano. 2015 Feb 1;2(1):33-53 - PubMed
  25. Oncotarget. 2017 Feb 28;8(9):15996-16016 - PubMed
  26. Nat Rev Cancer. 2011 Dec 23;12(1):39-50 - PubMed
  27. Anticancer Agents Med Chem. 2015;15(7):856-68 - PubMed
  28. Virchows Arch. 2015 Oct;467(4):367-82 - PubMed
  29. Molecules. 2017 Dec 31;23 (1):null - PubMed
  30. J Nephrol. 2018 Feb;31(1):15-25 - PubMed
  31. Adv Exp Med Biol. 2012;748:145-69 - PubMed
  32. BMC Cancer. 2016 Mar 15;16:220 - PubMed
  33. Expert Rev Anticancer Ther. 2007 May;7(5):617-26 - PubMed
  34. Antioxid Redox Signal. 2013 Sep 10;19(8):765-78 - PubMed
  35. Molecules. 2018 Feb 10;23 (2):null - PubMed
  36. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015 May-Jun;7(3):315-29 - PubMed
  37. Urol Oncol. 2014 Feb;32(2):202-6 - PubMed
  38. Leuk Res. 2017 Nov;62:84-90 - PubMed
  39. Nanomedicine (Lond). 2017 Feb;12 (4):403-416 - PubMed
  40. Int J Dev Biol. 2004;48(5-6):509-17 - PubMed
  41. Mol Cancer Ther. 2014 Jul;13(7):1740-9 - PubMed
  42. Theranostics. 2015 Jan 21;5(4):357-70 - PubMed
  43. Chem Commun (Camb). 2010 Apr 28;46(16):2736-8 - PubMed
  44. Cancer Sci. 2015 Aug;106(8):1023-32 - PubMed
  45. Int J Cancer. 2008 Nov 15;123(10):2229-38 - PubMed
  46. Small. 2014 Dec 29;10(24):5137-50 - PubMed
  47. Biochim Biophys Acta. 2012 Oct;1823(10):1945-57 - PubMed
  48. J Gastrointest Oncol. 2016 Jun;7(3):487-94 - PubMed
  49. Genet Med. 2014 Mar;16(3):251-7 - PubMed
  50. ACS Nano. 2016 Feb 23;10 (2):2860-70 - PubMed
  51. Cell Death Dis. 2016 Jun 09;7(6):e2253 - PubMed
  52. J Microencapsul. 2016 Jun;33(4):372-80 - PubMed
  53. Mol Biosyst. 2010 Oct;6(10):1813-20 - PubMed
  54. Redox Biol. 2015;4:180-3 - PubMed
  55. Int J Cancer. 2018 Feb 1;142(3):440-448 - PubMed
  56. Chem Biol Interact. 2015 May 5;232:85-93 - PubMed
  57. ACS Nano. 2013 Jul 23;7(7):5654-9 - PubMed
  58. Nanomedicine (Lond). 2013 Sep;8(9):1483-508 - PubMed
  59. Mol Pharm. 2017 Mar 6;14 (3):875-884 - PubMed
  60. Pharmacoeconomics. 2017 Dec;35(12 ):1195-1209 - PubMed
  61. Biomaterials. 2008 Jun;29(18):2705-9 - PubMed
  62. Cancer Res. 2013 Aug 15;73(16):4965-77 - PubMed
  63. Antioxidants (Basel). 2018 Jan 19;7(1):null - PubMed
  64. Oxid Med Cell Longev. 2016;2016:1616781 - PubMed
  65. Drug Deliv Transl Res. 2013 Aug 1;3(4):375-9 - PubMed
  66. Cell Death Differ. 2014 Oct;21(10):1622-32 - PubMed
  67. Cell Biol Toxicol. 2007 Jan;23(1):15-25 - PubMed
  68. Angew Chem Int Ed Engl. 2018 Jan 2;57(1):287-291 - PubMed
  69. Oncol Rep. 2015 Dec;34(6):2969-76 - PubMed
  70. Antioxid Redox Signal. 2012 Jun 1;16(11):1295-322 - PubMed
  71. Biomaterials. 2011 Apr;32(11):2918-29 - PubMed

Publication Types