Display options
Share it on

Sci Rep. 2018 Feb 22;8(1):3506. doi: 10.1038/s41598-018-21704-3.

Synthesis of armchair graphene nanoribbons from the 10,10'-dibromo-9,9'-bianthracene molecules on Ag(111): the role of organometallic intermediates.

Scientific reports

K A Simonov, A V Generalov, A S Vinogradov, G I Svirskiy, A A Cafolla, C McGuinness, T Taketsugu, A Lyalin, N Mårtensson, A B Preobrajenski

Affiliations

  1. Department of Physics and Astronomy, Uppsala University, Box 516, 75120, Uppsala, Sweden. [email protected].
  2. MAX IV Laboratory, Lund University, Box 118, 22100, Lund, Sweden. [email protected].
  3. V.A. Fock Institute of Physics, St. Petersburg State University, 198504, St. Petersburg, Russia. [email protected].
  4. MAX IV Laboratory, Lund University, Box 118, 22100, Lund, Sweden.
  5. V.A. Fock Institute of Physics, St. Petersburg State University, 198504, St. Petersburg, Russia.
  6. School of Physical Sciences, Dublin City University, Dublin, D09, Ireland.
  7. School of Physics, Trinity College Dublin, College Green, Dublin, D02, Ireland.
  8. Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
  9. Global Research Center for Environment and Energy Based on Nanomaterials Science (GREEN), National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan.
  10. Department of Physics and Astronomy, Uppsala University, Box 516, 75120, Uppsala, Sweden.
  11. MAX IV Laboratory, Lund University, Box 118, 22100, Lund, Sweden. [email protected].

PMID: 29472611 PMCID: PMC5823938 DOI: 10.1038/s41598-018-21704-3

Abstract

We investigate the bottom-up growth of N = 7 armchair graphene nanoribbons (7-AGNRs) from the 10,10'-dibromo-9,9'-bianthracene (DBBA) molecules on Ag(111) with the focus on the role of the organometallic (OM) intermediates. It is demonstrated that DBBA molecules on Ag(111) are partially debrominated at room temperature and lose all bromine atoms at elevated temperatures. Similar to DBBA on Cu(111), debrominated molecules form OM chains on Ag(111). Nevertheless, in contrast with the Cu(111) substrate, formation of polyanthracene chains from OM intermediates via an Ullmann-type reaction is feasible on Ag(111). Cleavage of C-Ag bonds occurs before the thermal threshold for the surface-catalyzed activation of C-H bonds on Ag(111) is reached, while on Cu(111) activation of C-H bonds occurs in parallel with the cleavage of the stronger C-Cu bonds. Consequently, while OM intermediates obstruct the Ullmann reaction between DBBA molecules on the Cu(111) substrate, they are required for the formation of polyanthracene chains on Ag(111). If the Ullmann-type reaction on Ag(111) is inhibited, heating of the OM chains produces nanographenes instead. Heating of the polyanthracene chains produces 7-AGNRs, while heating of nanographenes causes the formation of the disordered structures with the possible admixture of short GNRs.

References

  1. ACS Nano. 2015 Apr 28;9(4):3399-403 - PubMed
  2. Nat Chem. 2012 Jan 15;4(3):215-20 - PubMed
  3. J Phys Condens Matter. 2011 Jul 27;23(29):295503 - PubMed
  4. ACS Nano. 2015 Jun 23;9(6):6305-14 - PubMed
  5. ACS Nano. 2013 Jul 23;7(7):6123-8 - PubMed
  6. Nat Commun. 2013;4:2023 - PubMed
  7. Nat Nanotechnol. 2007 Nov;2(11):687-91 - PubMed
  8. Chem Commun (Camb). 2014 Jan 28;50(8):1006-8 - PubMed
  9. ACS Nano. 2014 Aug 26;8(8):7880-9 - PubMed
  10. ACS Nano. 2013 Sep 24;7(9):8190-8 - PubMed
  11. ACS Nano. 2016 Aug 23;10(8):8006-11 - PubMed
  12. J Am Chem Soc. 2010 Nov 24;132(46):16669-76 - PubMed
  13. ACS Nano. 2015 Dec 22;9(12):12035-44 - PubMed
  14. Phys Chem Chem Phys. 2011 Aug 28;13(32):14283-92 - PubMed
  15. Nanoscale. 2013 Sep 21;5(18):8269-87 - PubMed
  16. ACS Nano. 2014 Jan 28;8(1):709-18 - PubMed
  17. Phys Rev B Condens Matter. 1991 Jan 15;43(3):1993-2006 - PubMed
  18. Nature. 2010 Jul 22;466(7305):470-3 - PubMed
  19. Nat Chem. 2017 Jan;9(1):33-38 - PubMed
  20. Chemphyschem. 2009 May 11;10(7):1032-5 - PubMed
  21. Phys Rev Lett. 2007 May 18;98(20):206805 - PubMed
  22. Sci Rep. 2016 Aug 25;6:32217 - PubMed
  23. ACS Nano. 2015 Sep 22;9(9):8997-9011 - PubMed
  24. ACS Nano. 2016 May 24;10(5):5490-8 - PubMed
  25. Adv Mater. 2016 Aug;28(29):6222-31 - PubMed
  26. Nature. 2016 Mar 24;531(7595):489-92 - PubMed
  27. Nat Nanotechnol. 2015 Feb;10(2):156-60 - PubMed
  28. J Am Chem Soc. 2014 May 7;136(18):6542-5 - PubMed
  29. ACS Nano. 2016 Sep 27;10(9):9000-8 - PubMed
  30. Langmuir. 2017 Mar 28;33(12 ):2993-2999 - PubMed
  31. Sci Rep. 2012;2:983 - PubMed
  32. Angew Chem Int Ed Engl. 2016 Oct 10;55(42):13052-13055 - PubMed
  33. Phys Rev Lett. 2012 May 25;108(21):216801 - PubMed
  34. Adv Mater. 2017 Jan;29(4):null - PubMed
  35. Phys Rev Lett. 2007 Nov 2;99(18):186801 - PubMed
  36. Acc Chem Res. 2013 Oct 15;46(10):2319-28 - PubMed
  37. J Am Chem Soc. 2015 Feb 11;137(5):1802-8 - PubMed
  38. Chemistry. 2016 Apr 18;22(17):5937-44 - PubMed
  39. Nano Lett. 2007 Dec;7(12):3813-7 - PubMed
  40. J Am Chem Soc. 2013 Feb 13;135(6):2060-3 - PubMed
  41. Nat Nanotechnol. 2014 Nov;9(11):896-900 - PubMed
  42. Small. 2009 Mar;5(5):592-7 - PubMed
  43. Chem Commun (Camb). 2014 Jul 21;50(57):7680-2 - PubMed
  44. Chemistry. 2015 Apr 7;21(15):5826-35 - PubMed
  45. ACS Nano. 2014 Sep 23;8(9):9181-7 - PubMed
  46. Nanoscale. 2014 Mar 7;6(5):2660-8 - PubMed
  47. Phys Chem Chem Phys. 2017 Sep 20;19(36):24605-24612 - PubMed
  48. ACS Nano. 2012 Aug 28;6(8):6930-5 - PubMed
  49. Rev Sci Instrum. 2007 Jan;78(1):013705 - PubMed
  50. Nature. 2006 Nov 16;444(7117):347-9 - PubMed
  51. J Am Chem Soc. 2015 Apr 1;137(12):4022-5 - PubMed

Publication Types