Display options
Share it on

Spinal Cord Ser Cases. 2017 Dec 14;3:17091. doi: 10.1038/s41394-017-0003-1. eCollection 2017.

Retraining walking adaptability following incomplete spinal cord injury.

Spinal cord series and cases

Emily J Fox, Nicole J Tester, Katie A Butera, Dena R Howland, Martina R Spiess, Paula L Castro-Chapman, Andrea L Behrman

Affiliations

  1. 1Department of Physical Therapy, University of Florida, Gainesville, FL USA.
  2. 2Brooks Rehabilitation Clinical Research Center, Jacksonville, FL USA.
  3. 3Brain Rehabilitation Research Center, Malcom Randall VAMC, Gainesville, FL USA.
  4. 4Department of Occupational Therapy, University of Florida, Gainesville, FL USA.
  5. 5Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY USA.
  6. 6Robley Rex VA Medical Center, Louisville, KY USA.
  7. 7Hocoma AG, Volketswil, Switzerland.
  8. 8James A. Haley VAMC, Tampa, FL USA.
  9. 9Department of Psychiatry and Behavioral Neuroscience, University of South Florida, Tampa, FL USA.

PMID: 29449967 PMCID: PMC5803746 DOI: 10.1038/s41394-017-0003-1

Abstract

INTRODUCTION: Functional walking requires the ability to modify one's gait pattern to environmental demands and task goals-gait adaptability. Following incomplete spinal cord injury (ISCI), gait rehabilitation such as locomotor training (Basic-LT) emphasizes intense, repetitive stepping practice. Rehabilitation approaches focusing on practice of gait adaptability tasks have not been established for individuals with ISCIs but may promote recovery of higher level walking skills. The primary purpose of this case series was to describe and determine the feasibility of administering a gait adaptability retraining approach-Adapt-LT-by comparing the dose and intensity of Adapt-LT to Basic-LT.

CASE PRESENTATION: Three individuals with ISCIs (>1 year, AIS C or D) completed three weeks each (15 sessions) of Basic-LT and Adapt-LT. Interventions included practice on a treadmill with body weight support and practice overground (≥30 mins total). Adapt-LT focused on speed changes, obstacle negotiation, and backward walking. Training parameters (step counts, speeds, perceived exertion) were compared and outcomes assessed pre and post interventions. Based on completion of the protocol and similarities in training parameters in the two interventions, it was feasible to administer Adapt-LT with a similar dosage and intensity as Basic-LT. Additionally, the participants demonstrated gains in walking function and balance following each training type.

DISCUSSION: Rehabilitation that includes stepping practice with adaptability tasks is feasible for individuals with ISCIs. Further investigation is needed to determine the efficacy of Adapt-LT.

Conflict of interest statement

Compliance with ethical standardsThe authors declare that they have no competing interests.The contents are solely the responsibility of the authors and do not necessarily represent the official views

References

  1. Physiother Theory Pract. 2014 Jan;30(1):29-37 - PubMed
  2. J Spinal Cord Med. 2008;31(2):166-70 - PubMed
  3. Exp Brain Res. 2015 Mar;233(3):1007-18 - PubMed
  4. Arch Phys Med Rehabil. 2012 Sep;93(9):1498-507 - PubMed
  5. Spinal Cord. 2008 Apr;46(4):246-54 - PubMed
  6. Gerontology. 2006;52(3):131-41 - PubMed
  7. Stroke Res Treat. 2014;2014:591013 - PubMed
  8. J Gerontol A Biol Sci Med Sci. 1995 Jan;50A(1):M28-34 - PubMed
  9. J Neurosci. 2012 Nov 28;32(48):17442-53 - PubMed
  10. J Neurotrauma. 2006 Mar-Apr;23(3-4):560-70 - PubMed
  11. Phys Med Rehabil Clin N Am. 2007 May;18(2):183-202, v - PubMed
  12. Scand J Rehabil Med. 1970;2(2):92-8 - PubMed
  13. Exp Neurol. 1986 May;92(2):421-35 - PubMed
  14. Brain Res Rev. 2008 Jan;57(1):2-12 - PubMed
  15. J Neurotrauma. 2007 Jun;24(6):1000-12 - PubMed
  16. Arch Phys Med Rehabil. 2014 Dec;95(12):2247-52 - PubMed
  17. Arch Phys Med Rehabil. 2005 Feb;86(2):190-6 - PubMed
  18. J Spinal Cord Med. 2011 Nov;34(6):535-46 - PubMed
  19. Arch Phys Med Rehabil. 2009 Oct;90(10 ):1692-8 - PubMed
  20. Phys Ther. 2010 May;90(5):793-802 - PubMed
  21. Arch Phys Med Rehabil. 2001 Jan;82(1):9-13 - PubMed
  22. Arch Phys Med Rehabil. 2012 Sep;93(9):1588-97 - PubMed
  23. J Spinal Cord Med. 2012 Sep;35(5):293-304 - PubMed
  24. Spinal Cord. 2009 Aug;47(8):582-91 - PubMed
  25. J Am Geriatr Soc. 1991 Feb;39(2):142-8 - PubMed
  26. Phys Ther. 2008 May;88(5):580-90 - PubMed
  27. Brain. 2004 Oct;127(Pt 10):2232-46 - PubMed
  28. Neurorehabil Neural Repair. 2011 Mar-Apr;25(3):285-93 - PubMed
  29. Arch Phys Med Rehabil. 2013 Nov;94(11):2297-308 - PubMed
  30. Phys Ther. 2009 Jun;89(6):601-11 - PubMed
  31. Phys Ther. 2016 Dec;96(12 ):1919-1929 - PubMed
  32. Brain Res Rev. 2008 Jan;57(1):199-211 - PubMed
  33. Arch Phys Med Rehabil. 2012 Aug;93(8):1476-84 - PubMed
  34. Neurorehabil Neural Repair. 2014 May;28(4):314-24 - PubMed
  35. Neuroimage. 2012 Jan 16;59(2):1602-7 - PubMed
  36. J Neurophysiol. 1997 Feb;77(2):797-811 - PubMed
  37. J Rehabil Med. 2010 Apr;42(4):323-31 - PubMed
  38. J Rehabil Med. 2013 Jul;45(7):616-22 - PubMed
  39. Physiother Theory Pract. 2016 Oct;32(7):536-45 - PubMed
  40. J Neurotrauma. 2002 Oct;19(10):1217-29 - PubMed
  41. Phys Ther. 2011 Jan;91(1):48-60 - PubMed
  42. Spinal Cord. 2008 Jul;46(7):500-6 - PubMed
  43. Hum Mov Sci. 2008 Oct;27(5):738-48 - PubMed
  44. J Neurophysiol. 1998 Mar;79(3):1329-40 - PubMed
  45. J Neurophysiol. 2010 Apr;103(4):2285-300 - PubMed
  46. Disabil Rehabil. 2005 Feb 18;27(4):156-63 - PubMed
  47. Exerc Sport Sci Rev. 2014 Jan;42(1):23-9 - PubMed

Publication Types

Grant support