Display options
Share it on

Front Plant Sci. 2018 Feb 08;9:126. doi: 10.3389/fpls.2018.00126. eCollection 2018.

Do Galactolipid Synthases Play a Key Role in the Biogenesis of Chloroplast Membranes of Higher Plants?.

Frontiers in plant science

Joana Rocha, Milène Nitenberg, Agnès Girard-Egrot, Juliette Jouhet, Eric Maréchal, Maryse A Block, Christelle Breton

Affiliations

  1. Université Grenoble Alpes, Grenoble, France.
  2. CERMAV, CNRS, Grenoble, France.
  3. GEMBAS Team, ICBMS, UMR 5246 CNRS, University of Lyon, Lyon, France.
  4. LPCV, UMR 5168 CNRS/CEA/INRA/UGA, Université Grenoble Alpes, Grenoble, France.

PMID: 29472943 PMCID: PMC5809773 DOI: 10.3389/fpls.2018.00126

Abstract

A unique feature of chloroplasts is their high content of the galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), which constitute up to 80% of their lipids. These galactolipids are synthesized in the chloroplast envelope membrane through the concerted action of galactosyltransferases, the so-called 'MGDG synthases (MGDs)' and 'DGDG synthases (DGDs),' which use uridine diphosphate (UDP)-galactose as donor. In Arabidopsis leaves, under standard conditions, the enzymes MGD1 and DGD1 provide the bulk of galactolipids, necessary for the massive expansion of thylakoid membranes. Under phosphate limited conditions, plants activate another pathway involving MGD2/MGD3 and DGD2 to provide additional DGDG that is exported to extraplastidial membranes where they partly replace phospholipids, a phosphate-saving mechanism in plants. A third enzyme system, which relies on the UDP-Gal-independent GGGT (also called SFR2 for SENSITIVE TO FREEZING 2), can be activated in response to a freezing stress. The biosynthesis of galactolipids by these multiple enzyme sets must be tightly regulated to meet the cellular demand in response to changing environmental conditions. The cooperation between MGD and DGD enzymes with a possible substrate channeling from diacylglycerol to MGDG and DGDG is supported by biochemical and biophysical studies and mutant analyses reviewed herein. The fine-tuning of MGDG to DGDG ratio, which allows the reversible transition from the hexagonal II to lamellar α phase of the lipid bilayer, could be a key factor in thylakoid biogenesis.

Keywords: Arabidopsis; DGDG; MGDG; biosynthesis; chloroplast; galactolipids

References

  1. Science. 2010 Oct 8;330(6001):226-8 - PubMed
  2. J Biol Chem. 2002 Jan 11;277(2):1166-73 - PubMed
  3. Eur J Biochem. 1979 Nov;101(2):429-38 - PubMed
  4. Trends Plant Sci. 2002 Mar;7(3):112-8 - PubMed
  5. Plant Physiol. 2006 Jul;141(3):1120-7 - PubMed
  6. FEBS J. 2007 Oct;274(19):5043-54 - PubMed
  7. Biochemistry. 2016 Dec 13;55(49):6776-6786 - PubMed
  8. Biochemistry. 2011 May 31;50(21):4451-66 - PubMed
  9. Trends Plant Sci. 2011 Feb;16(2):98-107 - PubMed
  10. Biochim Biophys Acta. 2014 Apr;1837(4):470-80 - PubMed
  11. PLoS Genet. 2011 Jul;7(7):e1002196 - PubMed
  12. Curr Opin Struct Biol. 2016 Oct;40:23-32 - PubMed
  13. Plant J. 2016 Mar;85(5):622-33 - PubMed
  14. J Cell Biol. 2004 Dec 6;167(5):863-74 - PubMed
  15. Nat Commun. 2015 May 08;6:7018 - PubMed
  16. Plant Cell Physiol. 2007 Nov;48(11):1517-23 - PubMed
  17. Prog Lipid Res. 2014 Apr;54:68-85 - PubMed
  18. FASEB J. 2014 Aug;28(8):3373-83 - PubMed
  19. Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):17216-21 - PubMed
  20. Plant Cell. 2003 Nov;15(11):2694-706 - PubMed
  21. Proc Natl Acad Sci U S A. 2014 Sep 16;111(37):13571-5 - PubMed
  22. J Biol Chem. 2005 Jul 29;280(30):27578-86 - PubMed
  23. Planta. 2017 Apr;245(4):793-806 - PubMed
  24. Int Rev Cell Mol Biol. 2016;323:1-30 - PubMed
  25. Nat Chem Biol. 2011 Sep 25;7(11):834-42 - PubMed
  26. J Plant Res. 2016 Jul;129(4):565-580 - PubMed
  27. Biochim Biophys Acta. 2012 Jan;1817(1):194-208 - PubMed
  28. Biochimie. 2013 Apr;95(4):700-8 - PubMed
  29. Proc Natl Acad Sci U S A. 1988 Jul;85(14):4966-70 - PubMed
  30. Plant Physiol. 2007 Dec;145(4):1361-70 - PubMed
  31. Science. 1999 Jun 25;284(5423):2181-4 - PubMed
  32. J Biol Chem. 2001 Aug 24;276(34):31806-12 - PubMed
  33. Plant Physiol. 2017 Aug;174(4):2183-2198 - PubMed
  34. FASEB J. 2014 Jul;28(7):3114-23 - PubMed
  35. Curr Opin Struct Biol. 2012 Oct;22(5):540-9 - PubMed
  36. Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):333-7 - PubMed
  37. J Biol Chem. 1994 Feb 25;269(8):5788-98 - PubMed
  38. Subcell Biochem. 2016;86:85-101 - PubMed
  39. DNA Res. 2012;19(1):91-102 - PubMed
  40. Plant J. 2009 Jan;57(2):322-31 - PubMed
  41. Proc Natl Acad Sci U S A. 2016 Sep 20;113(38):10714-9 - PubMed
  42. Proc Natl Acad Sci U S A. 2000 Sep 12;97(19):10649-54 - PubMed
  43. Annu Rev Cell Dev Biol. 2009;25:71-91 - PubMed
  44. Prog Lipid Res. 2007 Jan;46(1):56-87 - PubMed
  45. J Biol Chem. 2010 Feb 26;285(9):6003-11 - PubMed
  46. Nat Commun. 2017 Apr 03;8:14899 - PubMed
  47. Biochimie. 2012 Jan;94(1):86-93 - PubMed
  48. Plant Cell. 2005 Nov;17(11):3094-110 - PubMed
  49. Plant Cell. 1995 Nov;7(11):1801-10 - PubMed
  50. Biochem J. 2017 Mar 23;474(7):1307-1320 - PubMed
  51. Biochem J. 1986 Apr 1;235(1):25-31 - PubMed
  52. FEBS Lett. 1994 Oct 3;352(3):307-10 - PubMed
  53. Eur J Biochem. 1999 Nov;265(3):990-1001 - PubMed
  54. J Mol Biol. 2010 May 28;399(1):196-206 - PubMed
  55. J Biol Chem. 1983 Nov 10;258(21):13281-6 - PubMed
  56. Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10960-5 - PubMed

Publication Types