Display options
Share it on

Front Microbiol. 2018 Feb 19;9:260. doi: 10.3389/fmicb.2018.00260. eCollection 2018.

Evolution of Phototrophy in the Chloroflexi Phylum Driven by Horizontal Gene Transfer.

Frontiers in microbiology

Lewis M Ward, James Hemp, Patrick M Shih, Shawn E McGlynn, Woodward W Fischer

Affiliations

  1. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States.
  2. Department of Gastroenterology, University of Utah School of Medicine, Salt Lake City, UT, United States.
  3. Department of Energy, Joint BioEnergy Institute, Emeryville, CA, United States.
  4. Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
  5. Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Japan.

PMID: 29515543 PMCID: PMC5826079 DOI: 10.3389/fmicb.2018.00260

Abstract

The evolutionary mechanisms behind the extant distribution of photosynthesis is a point of substantial contention. Hypotheses range from the presence of phototrophy in the last universal common ancestor and massive gene loss in most lineages, to a later origin in Cyanobacteria followed by extensive horizontal gene transfer into the extant phototrophic clades, with intermediate scenarios that incorporate aspects of both end-members. Here, we report draft genomes of 11 Chloroflexi: the phototrophic Chloroflexia isolate

Keywords: comparative genomics; lateral gene transfer; microbial diversity; microbial metabolism; phylogenetics

References

  1. Microbes Environ. 2012;27(3):293-9 - PubMed
  2. Trends Microbiol. 2010 Oct;18(10):464-70 - PubMed
  3. Science. 1985;229:762-5 - PubMed
  4. Appl Environ Microbiol. 2011 Mar;77(6):1925-36 - PubMed
  5. Science. 2000 Sep 8;289(5485):1724-30 - PubMed
  6. Biochem Biophys Res Commun. 2005 Apr 15;329(3):966-75 - PubMed
  7. Bioinformatics. 2009 May 1;25(9):1189-91 - PubMed
  8. Int J Syst Evol Microbiol. 2013 Feb;63(Pt 2):625-35 - PubMed
  9. Science. 2005 Sep 23;309(5743):2061-4 - PubMed
  10. Front Plant Sci. 2016 Mar 02;7:257 - PubMed
  11. Nat Rev Microbiol. 2014 Jun;12 (6):449-55 - PubMed
  12. Microbes Environ. 2012;27(4):374-81 - PubMed
  13. Int J Syst Evol Microbiol. 2000 Jul;50 Pt 4:1655-63 - PubMed
  14. Biochemistry. 2005 Aug 2;44(30):10037-45 - PubMed
  15. Genome Announc. 2015 Nov 19;3(6):null - PubMed
  16. Methods. 2016 Jun 1;102:3-11 - PubMed
  17. ISME J. 2011 Aug;5(8):1262-78 - PubMed
  18. Int J Syst Evol Microbiol. 2007 Jan;57(Pt 1):81-91 - PubMed
  19. Syst Appl Microbiol. 1987;9:47-53 - PubMed
  20. Syst Appl Microbiol. 2011 Jun;34(4):293-302 - PubMed
  21. Geobiology. 2013 Mar;11(2):180-90 - PubMed
  22. Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):10749-10754 - PubMed
  23. Genome Announc. 2017 Oct 5;5(40):null - PubMed
  24. Int J Syst Evol Microbiol. 2006 Jun;56(Pt 6):1331-40 - PubMed
  25. Cell. 1984 Jul;37(3):949-57 - PubMed
  26. Science. 2002 Nov 22;298(5598):1616-20 - PubMed
  27. J Comput Biol. 2013 Oct;20(10):714-37 - PubMed
  28. J Biol Chem. 2009 Jun 5;284(23):15530-40 - PubMed
  29. Genome Announc. 2015 Nov 19;3(6):null - PubMed
  30. Int J Syst Evol Microbiol. 2004 Nov;54(Pt 6):2049-51 - PubMed
  31. Microbiol Mol Biol Rev. 2009 Dec;73(4):565-76 - PubMed
  32. Mol Biol Evol. 2010 Feb;27(2):221-4 - PubMed
  33. Microbiol Rev. 1987 Jun;51(2):221-71 - PubMed
  34. Front Microbiol. 2012 Dec 05;3:410 - PubMed
  35. Water Sci Technol. 2002;46(1-2):111-4 - PubMed
  36. ISME J. 2012 Dec;6(12):2245-56 - PubMed
  37. Int J Syst Evol Microbiol. 2002 Jan;52(Pt 1):187-93 - PubMed
  38. Biochim Biophys Acta. 2011 Nov;1807(11):1398-413 - PubMed
  39. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 - PubMed
  40. Genome Announc. 2015 Nov 19;3(6):null - PubMed
  41. Environ Microbiol. 2007 Aug;9(8):2067-78 - PubMed
  42. Antonie Van Leeuwenhoek. 2013 Jan;103(1):99-119 - PubMed
  43. Arch Microbiol. 1974;100(1):5-24 - PubMed
  44. Microbiome. 2017 Oct 17;5(1):140 - PubMed
  45. BMC Genomics. 2008 Feb 08;9:75 - PubMed
  46. Environ Microbiol. 2011 Feb;13(2):279-82 - PubMed
  47. Genome Announc. 2015 Nov 19;3(6):null - PubMed
  48. Int J Syst Bacteriol. 1995 Oct;45(4):676-81 - PubMed
  49. Annu Rev Microbiol. 2007;61:113-29 - PubMed
  50. Bioinformatics. 2014 May 1;30(9):1312-3 - PubMed
  51. Genome Announc. 2015 Nov 19;3(6):null - PubMed
  52. Genome Announc. 2015 Nov 19;3(6):null - PubMed
  53. Int J Syst Evol Microbiol. 2014 Jun;64(Pt 6):2119-27 - PubMed
  54. Science. 2017 Mar 31;355(6332):1436-1440 - PubMed
  55. Biochim Biophys Acta. 2013 Nov-Dec;1827(11-12):1383-91 - PubMed
  56. Microbes Environ. 2009;24(3):205-16 - PubMed
  57. Nature. 2013 Dec 12;504(7479):231-6 - PubMed
  58. Genome Announc. 2015 Oct 01;3(5):null - PubMed
  59. Microbiome. 2013 Aug 05;1(1):22 - PubMed
  60. Int J Syst Evol Microbiol. 2010 Aug;60(Pt 8):1794-801 - PubMed
  61. Appl Environ Microbiol. 2003 Dec;69(12):7224-35 - PubMed
  62. FEMS Microbiol Lett. 2002 Feb 5;207(2):179-83 - PubMed
  63. Int J Syst Evol Microbiol. 2009 Nov;59(Pt 11):2692-7 - PubMed
  64. Front Microbiol. 2017 Jun 06;8:943 - PubMed
  65. Front Microbiol. 2016 Jun 17;7:919 - PubMed
  66. J Mol Evol. 2001 Apr;52(4):333-41 - PubMed
  67. Environ Microbiol. 2008 Apr;10(4):1039-56 - PubMed
  68. BMC Bioinformatics. 2009 Dec 15;10:421 - PubMed
  69. Appl Environ Microbiol. 2006 Jun;72(6):4360-9 - PubMed
  70. Genome Res. 2015 Jul;25(7):1043-55 - PubMed
  71. Annu Rev Plant Biol. 2011;62:515-48 - PubMed
  72. Stand Genomic Sci. 2011 Oct 15;5(1):97-111 - PubMed
  73. Proc Natl Acad Sci U S A. 2014 May 27;111(21):7795-800 - PubMed
  74. J Bacteriol. 2005 Mar;187(5):1702-9 - PubMed
  75. Nat Microbiol. 2016 Apr 11;1:16048 - PubMed
  76. Int J Syst Evol Microbiol. 2013 Aug;63(Pt 8):2992-3002 - PubMed
  77. Nucleic Acids Res. 2016 Jul 8;44(W1):W242-5 - PubMed

Publication Types