Display options
Share it on

Oncotarget. 2018 Jan 03;9(11):9789-9807. doi: 10.18632/oncotarget.23929. eCollection 2018 Feb 09.

Proteomic analyses identify prognostic biomarkers for pancreatic ductal adenocarcinoma.

Oncotarget

Dingyuan Hu, Daniel Ansari, Krzysztof Pawłowski, Qimin Zhou, Agata Sasor, Charlotte Welinder, Theresa Kristl, Monika Bauden, Melinda Rezeli, Yi Jiang, György Marko-Varga, Roland Andersson

Affiliations

  1. Lund University, Faculty of Medicine, Department of Clinical Sciences Lund (Surgery), Lund, Sweden.
  2. Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
  3. Lund University, Skane University Hospital, Department of Clinical Sciences Lund (Surgery), Lund, Sweden.
  4. Department of Experimental Design and Bioinformatics, Warsaw University of Life Sciences, Warsaw, Poland.
  5. Department of Translational Medicine, Lund University, Malmö, Sweden.
  6. Department of Pathology, Skåne University Hospital, Lund, Sweden.
  7. Lund University, Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund, Sweden.
  8. Department of Biomedical Engineering, Clinical Protein Science and Imaging, Lund University, Lund, Sweden.

PMID: 29515771 PMCID: PMC5839402 DOI: 10.18632/oncotarget.23929

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy. Here we show that shotgun and targeted protein sequencing can be used to identify potential prognostic biomarkers in formalin-fixed paraffin-embedded specimens from 9 patients with PDAC with "short" survival (<12 months) and 10 patients with "long" survival (>45 months) undergoing surgical resection. A total of 24 and 147 proteins were significantly upregulated [fold change ≥2 or ≤0.5 and P<0.05; or different detection frequencies (≥5 samples)] in patients with "short" survival (including GLUT1) and "long" survival (including C9orf64, FAM96A, CDH1 and CDH17), respectively. STRING analysis of these proteins indicated a tight protein-protein interaction network centered on TP53. Ingenuity pathway analysis linked proteins representing "activated stroma factors" and "basal tumor factors" to poor prognosis of PDAC. It also highlighted TCF1 and CTNNB1 as possible upstream regulators. Further parallel reaction monitoring verified that seven proteins were upregulated in patients with "short" survival (MMP9, CLIC3, MMP8, PRTN3, P4HA2, THBS1 and FN1), while 18 proteins were upregulated in patients with "long" survival, including EPCAM, LGALS4, VIL1, CLCA1 and TPPP3. Thus, we verified 25 protein biomarker candidates for PDAC prognosis at the tissue level. Furthermore, an activated stroma status and protein-protein interactions with TP53 might be linked to poor prognosis of PDAC.

Keywords: biomarker; pancreatic ductal adenocarcinoma; proteome; survival; tumor microenvironment

Conflict of interest statement

CONFLICTS OF INTEREST The authors declare no conflicts of interest.

References

  1. Biochim Biophys Acta. 2015 Oct;1848(10 Pt B):2638-46 - PubMed
  2. Int J Biochem Cell Biol. 2008;40(6-7):1246-72 - PubMed
  3. Gastroenterology. 2012 Feb;142(2):219-32 - PubMed
  4. Open Biol. 2016 Dec;6(12 ): - PubMed
  5. Eur J Surg Oncol. 2007 Apr;33(3):266-70 - PubMed
  6. Lab Invest. 2015 Jan;95(1):43-55 - PubMed
  7. Cancer Res. 2017 Feb 15;77(4):874-885 - PubMed
  8. Ann Surg. 2013 Aug;258(2):336-46 - PubMed
  9. World J Gastroenterol. 2014 Mar 7;20(9):2237-46 - PubMed
  10. Biosci Rep. 2009 Nov 23;30(2):135-48 - PubMed
  11. Histopathology. 2014 Apr;64(5):683-92 - PubMed
  12. BMC Cancer. 2014 Jan 02;14:1 - PubMed
  13. World J Gastroenterol. 2016 Mar 28;22(12 ):3471-85 - PubMed
  14. Ann Surg Oncol. 2017 Jul;24(7):2040-2046 - PubMed
  15. Scand J Gastroenterol. 2017 Jun - Jul;52(6-7):641-646 - PubMed
  16. Surgery. 2016 Jun;159(6):1520-1527 - PubMed
  17. Int J Oncol. 2017 May;50(5):1792-1800 - PubMed
  18. Oncotarget. 2015 May 10;6(13):11561-74 - PubMed
  19. Brief Funct Genomic Proteomic. 2008 Jul;7(4):283-90 - PubMed
  20. Science. 1994 Sep 9;265(5178):1582-4 - PubMed
  21. Cancer Res. 2011 Apr 1;71(7):2411-6 - PubMed
  22. Nucleic Acids Res. 2015 Jan;43(Database issue):D447-52 - PubMed
  23. CA Cancer J Clin. 2017 Jan;67(1):7-30 - PubMed
  24. ACS Chem Biol. 2014 Aug 15;9(8):1812-25 - PubMed
  25. Proteins. 2006 May 15;63(3):424-39 - PubMed
  26. Br J Cancer. 2013 Mar 5;108(4):914-23 - PubMed
  27. Clin Cancer Res. 2011 Jul 1;17(13):4341-54 - PubMed
  28. Nucleic Acids Res. 2016 Jan 4;44(D1):D481-7 - PubMed
  29. Nat Med. 2011 Apr;17 (4):500-3 - PubMed
  30. Cancer Res. 2014 Jun 1;74(11):2913-21 - PubMed
  31. Cell Metab. 2013 Aug 6;18(2):187-98 - PubMed
  32. Cancer Res. 2009 Feb 1;69(3):753-7 - PubMed
  33. Nature. 2010 Oct 28;467(7319):1114-7 - PubMed
  34. Oncogene. 2017 Mar;36(11):1461-1473 - PubMed
  35. J Transl Med. 2014 Apr 05;12:87 - PubMed
  36. Proteomics. 2012 Nov;12(22):3393-402 - PubMed
  37. Nat Rev Cancer. 2016 Sep;16(9):553-65 - PubMed
  38. Pancreas. 2008 Nov;37(4):352-7 - PubMed
  39. Oncogene. 2012 Apr 26;31(17):2237-46 - PubMed
  40. Gut. 2015 Sep;64(9):1476-84 - PubMed
  41. J Cell Biochem. 2014 Aug;115(8):1351-61 - PubMed
  42. Cell. 1989 Dec 22;59(6):959-68 - PubMed
  43. Diagn Pathol. 2015 Dec 10;10:211 - PubMed
  44. Pancreas. 2014 May;43(4):571-7 - PubMed
  45. Int J Cancer. 2013 Mar 15;132(6):1368-82 - PubMed
  46. Mol Cell Biol. 2008 Aug;28(15):4745-58 - PubMed
  47. Pancreas. 2015 Jan;44(1):106-15 - PubMed
  48. Cell Metab. 2016 Jan 12;23 (1):27-47 - PubMed
  49. Int J Cancer. 2015 Sep 15;137(6):1318-29 - PubMed
  50. Cancer Cell. 2009 Sep 8;16(3):183-94 - PubMed
  51. Cancer Cell. 2014 Jun 16;25(6):719-34 - PubMed
  52. Cancer Lett. 2016 Oct 10;381(1):252-8 - PubMed
  53. Clin Gastroenterol Hepatol. 2008 Oct;6(10):1155-61 - PubMed
  54. Philos Trans R Soc Lond B Biol Sci. 2014 Feb 03;369(1638):20130108 - PubMed
  55. PLoS One. 2013 Dec 26;8(12):e83943 - PubMed
  56. Nature. 2016 Oct 20;538(7625):378-382 - PubMed
  57. Oncogene. 2011 Aug 4;30(31):3468-76 - PubMed
  58. Nat Rev Cancer. 2002 Mar;2(3):161-74 - PubMed
  59. Philos Trans R Soc Lond B Biol Sci. 2014 Feb 03;369(1638):20130101 - PubMed
  60. Cancer Genomics Proteomics. 2012 Jan;9(1):51-4 - PubMed
  61. Pancreas. 2017 Mar;46(3):311-322 - PubMed
  62. Am J Pathol. 2001 May;158(5):1677-83 - PubMed
  63. World J Gastroenterol. 2011 Nov 28;17(44):4845-52 - PubMed
  64. Arch Pathol Lab Med. 2017 Jan;141(1):144-150 - PubMed
  65. Nucleic Acids Res. 2017 Jan 4;45(D1):D183-D189 - PubMed
  66. Int J Oncol. 2002 Dec;21(6):1189-95 - PubMed
  67. Elife. 2015 Mar 17;4:null - PubMed
  68. Proc Natl Acad Sci U S A. 2014 Jul 29;111(30):E3091-100 - PubMed
  69. J Cell Sci. 2014 Sep 15;127(Pt 18):3893-901 - PubMed
  70. Nat Genet. 2015 Oct;47(10):1168-78 - PubMed
  71. Nature. 2015 Feb 26;518(7540):495-501 - PubMed
  72. J Proteome Res. 2011 Sep 2;10(9):4302-13 - PubMed
  73. Oncogene. 2011 Sep 15;30(37):3930-42 - PubMed
  74. PLoS One. 2013 Apr 12;8(4):e60861 - PubMed
  75. Clin Cancer Res. 2004 Apr 15;10(8):2832-45 - PubMed
  76. Curr Opin Gastroenterol. 2013 Sep;29(5):537-43 - PubMed
  77. Oncotarget. 2015 Jan 20;6(2):651-61 - PubMed
  78. Cancer Biol Ther. 2012 Aug;13(10):899-907 - PubMed
  79. Mod Pathol. 2011 Dec;24(12):1612-9 - PubMed
  80. Nat Methods. 2016 Sep;13(9):731-40 - PubMed
  81. Nucleic Acids Res. 2015 Jan;43(Database issue):D1049-56 - PubMed
  82. Neoplasia. 2006 Apr;8(4):279-89 - PubMed
  83. Clin Cancer Res. 2011 Feb 15;17(4):805-16 - PubMed
  84. Nat Commun. 2012 Feb 14;3:676 - PubMed
  85. Nat Protoc. 2009;4(1):44-57 - PubMed
  86. Br J Surg. 2017 Apr;104(5):600-607 - PubMed
  87. Acta Biochim Biophys Sin (Shanghai). 2017 Feb 6;49(2):119-127 - PubMed
  88. Nature. 2016 Mar 3;531(7592):47-52 - PubMed
  89. Cancer. 2015 May 15;121(10 ):1570-80 - PubMed
  90. Pancreas. 2016 Aug;45(7):974-9 - PubMed
  91. N Engl J Med. 2014 Nov 27;371(22):2140 - PubMed
  92. Mol Cell. 2017 Aug 17;67(4):685-701.e6 - PubMed
  93. Cancer Res. 2013 Aug 1;73(15):4909-22 - PubMed
  94. J Biol Chem. 2017 Jun 2;292(22):9164-9174 - PubMed

Publication Types