Display options
Share it on

R Soc Open Sci. 2018 Feb 14;5(2):171249. doi: 10.1098/rsos.171249. eCollection 2018 Feb.

Amadori-glycated phosphatidylethanolamine enhances the physical stability and selective targeting ability of liposomes.

Royal Society open science

Taiki Miyazawa, Reina Kamiyoshihara, Naoki Shimizu, Takahiro Harigae, Yurika Otoki, Junya Ito, Shunji Kato, Teruo Miyazawa, Kiyotaka Nakagawa

Affiliations

  1. Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-0845, Japan.
  2. Department of Cell Biology, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan.
  3. Food and Biotechnology Innovation Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Japan.
  4. Food and Health Science Research Unit, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan.

PMID: 29515844 PMCID: PMC5830733 DOI: 10.1098/rsos.171249

Abstract

Liposomes consisting of 100% phosphatidylcholine exhibit poor membrane fusion, cellular uptake and selective targeting capacities. To overcome these limitations, we used Amadori-glycated phosphatidylethanolamine, which is universally present in animals and commonly consumed in foods. We found that liposomes containing Amadori-glycated phosphatidylethanolamine exhibited significantly reduced negative membrane potential and demonstrated high cellular uptake.

Keywords: Amadori-glycated phosphatidylethanolamine; Maillard reaction product; curcumin; glucose transporter; glycolipid; liposome

Conflict of interest statement

We declare we have no competing interests.

References

  1. J Oleo Sci. 2016;65(5):399-411 - PubMed
  2. Trends Biotechnol. 1998 Jul;16(7):307-21 - PubMed
  3. Am J Physiol. 1992 Sep;263(3 Pt 1):G312-8 - PubMed
  4. Nat Rev Cancer. 2004 Nov;4(11):891-9 - PubMed
  5. Faraday Discuss. 2013;166:417-29 - PubMed
  6. Nanomedicine (Lond). 2013 Sep;8(9):1509-28 - PubMed
  7. Molecules. 2015 May 20;20(5):9183-213 - PubMed
  8. J Lipid Res. 2002 Mar;43(3):523-9 - PubMed
  9. Am J Physiol. 1996 Apr;270(4 Pt 1):G541-53 - PubMed
  10. Int J Pharm. 2005 May 30;296(1-2):44-54 - PubMed
  11. Biochim Biophys Acta. 1979 Oct 19;557(1):32-44 - PubMed
  12. Nature. 2015 Oct 15;526(7573):391-6 - PubMed
  13. J Nutr. 2001 Nov;131(11):2932-5 - PubMed
  14. Anal Sci. 2009 Mar;25(3):385-8 - PubMed
  15. J Dermatol Sci. 2007 Apr;46(1):11-20 - PubMed
  16. Adv Drug Deliv Rev. 2013 Jan;65(1):36-48 - PubMed
  17. Int J Endocrinol. 2010;2010:null - PubMed
  18. J Am Diet Assoc. 2004 Aug;104(8):1287-91 - PubMed
  19. Int J Nanomedicine. 2016 Jun 28;11:3009-22 - PubMed
  20. AAPS J. 2015 Nov;17(6):1341-56 - PubMed
  21. Biochim Biophys Acta. 1995 May 4;1235(2):289-95 - PubMed
  22. Cancer. 2005 Sep 15;104(6):1322-31 - PubMed
  23. Rev Bras Hematol Hemoter. 2011;33(4):297-301 - PubMed
  24. J Biol Chem. 1957 May;226(1):497-509 - PubMed
  25. Colloids Surf B Biointerfaces. 2011 Nov 1;88(1):231-9 - PubMed
  26. J Mol Biol. 1965 Aug;13(1):238-52 - PubMed
  27. Chem Sci. 2013 Jun;4(6):2319-2333 - PubMed
  28. Ann N Y Acad Sci. 2005 Jun;1043:276-9 - PubMed
  29. J Lipid Res. 2005 Nov;46(11):2514-24 - PubMed

Publication Types