Display options
Share it on

Chem Mater. 2017 Aug 08;29(15):6279-6288. doi: 10.1021/acs.chemmater.7b01367. Epub 2017 Jul 12.

Rapid Wafer-Scale Growth of Polycrystalline 2H-MoS.

Chemistry of materials : a publication of the American Chemical Society

Berc Kalanyan, William A Kimes, Ryan Beams, Stephan J Stranick, Elias Garratt, Irina Kalish, Albert V Davydov, Ravindra K Kanjolia, James E Maslar

Affiliations

  1. Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States.
  2. EMD Performance Materials, Haverhill, Massachusetts 01835, United States.

PMID: 29545674 PMCID: PMC5846631 DOI: 10.1021/acs.chemmater.7b01367

Abstract

High volume manufacturing of devices based on transition metal dichalcogenide (TMD) ultra-thin films will require deposition techniques that are capable of reproducible wafer-scale growth with monolayer control. To date, TMD growth efforts have largely relied upon sublimation and transport of solid precursors with minimal control over vapor phase flux and gas-phase chemistry, which are critical for scaling up laboratory processes to manufacturing settings. To address these issues, we report a new pulsed metalorganic chemical vapor deposition (MOCVD) route for MoS

Keywords: CVD; MOCVD; MoS2; metalorganic chemistry; transition metal dichalcogenides

Conflict of interest statement

Notes The authors declare no competing financial interest.

References

  1. Nat Nanotechnol. 2012 Aug;7(8):494-8 - PubMed
  2. Sci Rep. 2013;3:1866 - PubMed
  3. ACS Nano. 2016 Jun 28;10(6):6054-61 - PubMed
  4. ACS Nano. 2016 Sep 27;10(9):8252-62 - PubMed
  5. Rev Sci Instrum. 2012 Aug;83(8):083106 - PubMed
  6. Nat Nanotechnol. 2013 Jul;8(7):497-501 - PubMed
  7. Nanotechnology. 2011 Mar 25;22(12):125706 - PubMed
  8. Nature. 2015 Apr 30;520(7549):656-60 - PubMed
  9. ACS Nano. 2016 Mar 22;10(3):3580-8 - PubMed
  10. Nanoscale. 2014 Aug 7;6(15):8949-55 - PubMed
  11. Nanoscale. 2016 Jan 28;8(4):2234-41 - PubMed
  12. J Am Chem Soc. 2013 Apr 24;135(16):5998-6001 - PubMed
  13. ACS Nano. 2016 Feb 23;10(2):2628-35 - PubMed
  14. ACS Nano. 2013 Sep 24;7(9):7931-6 - PubMed
  15. J Am Chem Soc. 2015 Sep 23;137(37):11892-5 - PubMed
  16. ACS Nano. 2012 Aug 28;6(8):7381-8 - PubMed
  17. Sci Rep. 2013;3:2345 - PubMed
  18. ACS Appl Mater Interfaces. 2016 Jul 27;8(29):19119-26 - PubMed
  19. ACS Nano. 2014 Aug 26;8(8):8292-9 - PubMed
  20. Nano Lett. 2013 Apr 10;13(4):1852-7 - PubMed
  21. Nat Nanotechnol. 2011 Mar;6(3):147-50 - PubMed
  22. ACS Appl Mater Interfaces. 2015 Jun 10;7(22):11921-9 - PubMed
  23. Phys Rev Lett. 2010 Sep 24;105(13):136805 - PubMed
  24. J Phys Chem Lett. 2012 Dec 6;3(23):3652-6 - PubMed
  25. Nano Lett. 2016 Jan 13;16(1):572-6 - PubMed
  26. Nano Lett. 2011 Dec 14;11(12):5111-6 - PubMed
  27. Nano Lett. 2015 Oct 14;15(10):6586-91 - PubMed
  28. Nat Nanotechnol. 2013 Nov;8(11):826-30 - PubMed
  29. Nat Nanotechnol. 2014 Apr;9(4):268-72 - PubMed
  30. Nanoscale. 2014 Sep 21;6(18):10584-8 - PubMed
  31. Nano Lett. 2015 Nov 11;15(11):7558-66 - PubMed
  32. Nanoscale. 2014 Oct 21;6(20):12096-103 - PubMed
  33. Adv Mater. 2015 Feb 18;27(7):1175-81 - PubMed
  34. Nature. 2015 Oct 1;526(7571):91-5 - PubMed
  35. Adv Mater. 2015 Aug 19;27(31):4640-8 - PubMed
  36. Adv Mater. 2016 Nov;28(44):9735-9743 - PubMed
  37. ACS Nano. 2015 Feb 24;9(2):2080-7 - PubMed
  38. Nat Commun. 2012;3:1011 - PubMed
  39. Small. 2012 Apr 10;8(7):966-71 - PubMed
  40. ACS Nano. 2016 Sep 27;10(9):9009-16 - PubMed
  41. ACS Nano. 2014 May 27;8(5):5304-14 - PubMed

Publication Types

Grant support