Display options
Share it on

Oncotarget. 2018 Jan 22;9(14):11592-11603. doi: 10.18632/oncotarget.24294. eCollection 2018 Feb 20.

MEK inhibition leads to BRCA2 downregulation and sensitization to DNA damaging agents in pancreas and ovarian cancer models.

Oncotarget

Francesca Vena, Ruochen Jia, Arman Esfandiari, Juan J Garcia-Gomez, Manuel Rodriguez-Justo, Jianguo Ma, Sakeena Syed, Lindsey Crowley, Brian Elenbaas, Samantha Goodstal, John A Hartley, Daniel Hochhauser

Affiliations

  1. Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6DD, UK.
  2. Department of Research Pathology, UCL Cancer Institute, London EC1M6BQ, UK.
  3. EMD Serono Research and Development Institute, Billerica 01821, MA, USA.

PMID: 29545922 PMCID: PMC5837749 DOI: 10.18632/oncotarget.24294

Abstract

Targeting the DNA damage response (DDR) in tumors with defective DNA repair is a clinically successful strategy. The RAS/RAF/MEK/ERK signalling pathway is frequently deregulated in human cancers. In this study, we explored the effects of MEK inhibition on the homologous recombination pathway and explored the potential for combination therapy of MEK inhibitors with DDR inhibitors and a hypoxia-activated prodrug. We studied effects of combining pimasertib, a selective allosteric inhibitor of MEK1/2, with olaparib, a small molecule inhibitor of poly (adenosine diphosphate [ADP]-ribose) polymerases (PARP), and with the hypoxia-activated prodrug evofosfamide in ovarian and pancreatic cancer cell lines. Apoptosis was assessed by Caspase 3/7 assay and protein expression was detected by immunoblotting. DNA damage response was monitored with γH2AX and RAD51 immunofluorescence staining.

Keywords: DNA damage; MEK inhibitors; ovarian cancer; pancreatic cancer; targeted therapy

Conflict of interest statement

CONFLICTS OF INTEREST This research was funded by an educational grant from EMD Serono Research and Development Institute.

References

  1. Cell Cycle. 2015 ;14 (23 ):3713-24 - PubMed
  2. N Engl J Med. 2015 Jan 1;372(1):30-9 - PubMed
  3. Mol Cell. 2001 Feb;7(2):273-82 - PubMed
  4. Nat Rev Mol Cell Biol. 2008 Apr;9(4):297-308 - PubMed
  5. J Med Chem. 2008 Apr 24;51(8):2412-20 - PubMed
  6. Nat Rev Clin Oncol. 2017 Aug;14 (8):463-482 - PubMed
  7. Int J Radiat Oncol Biol Phys. 2016 Jun 1;95(2):772-81 - PubMed
  8. Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2201-6 - PubMed
  9. Nat Rev Cancer. 2004 Oct;4(10 ):814-9 - PubMed
  10. N Engl J Med. 2012 Jul 12;367 (2):107-14 - PubMed
  11. Oncogene. 2007 May 14;26(22):3291-310 - PubMed
  12. Curr Pharm Des. 2004;10(16):1907-14 - PubMed
  13. Nature. 2005 Apr 14;434(7035):913-7 - PubMed
  14. J Cell Sci. 2001 Oct;114(Pt 20):3591-8 - PubMed
  15. Br J Cancer. 2016 Mar 29;114(7):713-5 - PubMed
  16. Gynecol Oncol Res Pract. 2014 Sep 30;1:3 - PubMed
  17. J Natl Cancer Inst. 2001 Feb 21;93(4):266-76 - PubMed
  18. J Mol Biol. 2001 Apr 13;307(5):1235-45 - PubMed
  19. Nat Rev Cancer. 2002 Jan;2(1):38-47 - PubMed
  20. Nat Rev Drug Discov. 2014 Dec;13(12):928-42 - PubMed
  21. Oncotarget. 2016 Jul 12;7(28):43746-43761 - PubMed
  22. Nat Struct Mol Biol. 2011 Jul 06;18(7):748-54 - PubMed
  23. Cancer Manag Res. 2010 Dec 20;3:9-16 - PubMed
  24. BMC Cancer. 2015 May 21;15:422 - PubMed
  25. Clin Cancer Res. 2012 Feb 1;18(3):758-70 - PubMed
  26. Cancer Res. 2010 Jan 15;70(2):440-6 - PubMed
  27. Br J Cancer. 2016 Nov 8;115(10 ):1157-1173 - PubMed
  28. DNA Repair (Amst). 2015 Aug;32:180-9 - PubMed
  29. Clin Cancer Res. 2015 Dec 15;21(24):5563-77 - PubMed
  30. Oncogene. 2002 Jul 25;21(32):5002-5 - PubMed
  31. Cancer Res. 2010 Oct 15;70(20):8045-54 - PubMed
  32. Clin Cancer Res. 2015 Oct 1;21(19):4257-61 - PubMed

Publication Types