Display options
Share it on

Oncotarget. 2018 Feb 07;9(14):11677-11690. doi: 10.18632/oncotarget.24433. eCollection 2018 Feb 20.

Metabolic profiles of triple-negative and luminal A breast cancer subtypes in African-American identify key metabolic differences.

Oncotarget

Fariba Tayyari, G A Nagana Gowda, Olufunmilayo F Olopade, Richard Berg, Howard H Yang, Maxwell P Lee, Wilfred F Ngwa, Suresh K Mittal, Daniel Raftery, Sulma I Mohammed

Affiliations

  1. Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA.
  2. Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA.
  3. The University of Chicago Medical Center, Chicago, IL 60637, USA.
  4. Indiana University Health Arnett Medical, Lafayette, IN 47905, USA.
  5. Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
  6. Brigham and Women's Hospital, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA 02115, USA.
  7. Depatment of Comparative Pathobiology and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
  8. Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.

PMID: 29545929 PMCID: PMC5837744 DOI: 10.18632/oncotarget.24433

Abstract

Breast cancer, a heterogeneous disease with variable pathophysiology and biology, is classified into four major subtypes. While hormonal- and antibody-targeted therapies are effective in the patients with luminal and HER-2 subtypes, the patients with triple-negative breast cancer (TNBC) subtype do not benefit from these therapies. The incidence rates of TNBC subtype are higher in African-American women, and the evidence indicates that these women have worse prognosis compared to women of European descent. The reasons for this disparity remain unclear but are often attributed to TNBC biology. In this study, we performed metabolic analysis of breast tissues to identify how TNBC differs from luminal A breast cancer (LABC) subtypes within the African-American and Caucasian breast cancer patients, respectively. We used High-Resolution Magic Angle Spinning (HR-MAS) 1H Nuclear magnetic resonance (NMR) to perform the metabolomic analysis of breast cancer and adjacent normal tissues (total n=82 samples). TNBC and LABC subtypes in African American women exhibited different metabolic profiles. Metabolic profiles of these subtypes were also distinct from those revealed in Caucasian women. TNBC in African-American women expressed higher levels of glutathione, choline, and glutamine as well as profound metabolic alterations characterized by decreased mitochondrial respiration and increased glycolysis concomitant with decreased levels of ATP. TNBC in Caucasian women was associated with increased pyrimidine synthesis. These metabolic alterations could potentially be exploited as novel treatment targets for TNBC.

Keywords: African American; Caucasian; NMR; breast cancer; triple-negative

Conflict of interest statement

CONFLICTS OF INTEREST No potential conflicts of interest were disclosed.

References

  1. Nucleic Acids Res. 2015 Jul 1;43(W1):W251-7 - PubMed
  2. Br J Cancer. 1978 Dec;38(6):745-8 - PubMed
  3. Am J Respir Crit Care Med. 2011 Sep 15;184(6):647-55 - PubMed
  4. Cancer Res. 2011 May 1;71(9):3236-45 - PubMed
  5. Int J Cancer. 2012 Dec 1;131(11):2471-7 - PubMed
  6. Cancers (Basel). 2011 Mar 11;3(1):1285-310 - PubMed
  7. Tumori. 2013 Jul-Aug;99(4):545-54 - PubMed
  8. Metabolomics. 2015;11(4):872-894 - PubMed
  9. Ann Surg Oncol. 2013 Dec;20 Suppl 3:S415-23 - PubMed
  10. Cancer Discov. 2017 Jul;7(7):782 - PubMed
  11. Nat Rev Cancer. 2011 Nov 17;11(12):835-48 - PubMed
  12. Aging Cell. 2012 Dec;11(6):960-7 - PubMed
  13. NMR Biomed. 2010 May;23(4):424-31 - PubMed
  14. Breast Cancer Res. 2014 Sep 11;16(5):434 - PubMed
  15. Nature. 2000 Aug 17;406(6797):747-52 - PubMed
  16. J Natl Cancer Inst. 2012 Jul 18;104(14):1094-101 - PubMed
  17. J Proteome Res. 2009 Jan;8(1):352-61 - PubMed
  18. NMR Biomed. 2012 Feb;25(2):369-78 - PubMed
  19. Cancer Genomics Proteomics. 2014 Nov-Dec;11(6):279-94 - PubMed
  20. J Biol Chem. 1995 Dec 15;270(50):29682-9 - PubMed
  21. Oncol Lett. 2012 Dec;4(6):1151-1157 - PubMed
  22. Anal Chim Acta. 2011 Feb 7;686(1-2):57-63 - PubMed
  23. J Natl Cancer Inst. 2011 Mar 16;103(6):451-3 - PubMed
  24. BMC Cancer. 2010 Aug 17;10:433 - PubMed
  25. PLoS One. 2015 Mar 09;10(3):e0119473 - PubMed
  26. Medicine (Baltimore). 2016 Jul;95(30):e4321 - PubMed
  27. J Biol Chem. 2004 Aug 6;279(32):33035-8 - PubMed
  28. Breast Cancer Res. 2006;8(4):R40 - PubMed
  29. Breast Cancer Res Treat. 2009 May;115(2):423-8 - PubMed
  30. J Proteome Res. 2013 Jul 5;12(7):3519-28 - PubMed
  31. J Proteome Res. 2016 Sep 2;15(9):3225-40 - PubMed
  32. Anal Chem. 1995 Mar 1;67(5):793-811 - PubMed
  33. J Cell Biochem. 2003 Oct 15;90(3):525-33 - PubMed
  34. Future Oncol. 2012 Oct;8(10):1207-10 - PubMed
  35. BMC Cancer. 2010 Nov 16;10:628 - PubMed
  36. Oncoscience. 2015 Aug 30;2(8):673-4 - PubMed
  37. Lipids. 2009 Jan;44(1):27-35 - PubMed
  38. BMC Cancer. 2014 Dec 12;14:941 - PubMed
  39. Int J Cancer. 2007 Apr 15;120(8):1721-30 - PubMed
  40. Int J Biol Sci. 2014 Aug 30;10(9):966-72 - PubMed
  41. JAMA. 2006 Jun 7;295(21):2492-502 - PubMed
  42. Curr Med Res Opin. 2012 Mar;28(3):419-28 - PubMed

Publication Types