Display options
Share it on

Front Microbiol. 2018 Feb 13;9:215. doi: 10.3389/fmicb.2018.00215. eCollection 2018.

FibroChip, a Functional DNA Microarray to Monitor Cellulolytic and Hemicellulolytic Activities of Rumen Microbiota.

Frontiers in microbiology

Sophie Comtet-Marre, Frédérique Chaucheyras-Durand, Ourdia Bouzid, Pascale Mosoni, Ali R Bayat, Pierre Peyret, Evelyne Forano

Affiliations

  1. UMR 454 MEDIS, INRA, Université Clermont Auvergne, Clermont-Ferrand, France.
  2. R&D Animal Nutrition, Lallemand, Blagnac, France.
  3. Milk Production Solutions, Green Technology, Natural Resources Institute Finland (Luke), Helsinki, Finland.

PMID: 29487591 PMCID: PMC5816793 DOI: 10.3389/fmicb.2018.00215

Abstract

Ruminants fulfill their energy needs for growth primarily through microbial breakdown of plant biomass in the rumen. Several biotic and abiotic factors influence the efficiency of fiber degradation, which can ultimately impact animal productivity and health. To provide more insight into mechanisms involved in the modulation of fibrolytic activity, a functional DNA microarray targeting genes encoding key enzymes involved in cellulose and hemicellulose degradation by rumen microbiota was designed. Eight carbohydrate-active enzyme (CAZyme) families (GH5, GH9, GH10, GH11, GH43, GH48, CE1, and CE6) were selected which represented 392 genes from bacteria, protozoa, and fungi. The DNA microarray, designated as FibroChip, was validated using targets of increasing complexity and demonstrated sensitivity and specificity. In addition, FibroChip was evaluated for its explorative and semi-quantitative potential. Differential expression of CAZyme genes was evidenced in the rumen bacterium

Keywords: carbohydrate esterases; cellulolysis; functional DNA microarray; glycoside hydrolases; hemicellulolysis; metatranscriptomics; rumen

References

  1. Anim Sci J. 2016 Nov;87(11):1363-1370 - PubMed
  2. Altern Lab Anim. 2002 Dec;30 Suppl 2:217-9 - PubMed
  3. Appl Microbiol Biotechnol. 2006 Aug;71(5):622-9 - PubMed
  4. Genome Res. 2011 Sep;21(9):1552-60 - PubMed
  5. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W445-51 - PubMed
  6. Front Microbiol. 2017 Jan 31;8:67 - PubMed
  7. Appl Environ Microbiol. 2017 Apr 17;83(9): - PubMed
  8. Curr Opin Biotechnol. 2012 Feb;23(1):49-55 - PubMed
  9. Bioresour Technol. 2010 Jul;101(13):4775-800 - PubMed
  10. Appl Microbiol Biotechnol. 2006 Aug;71(5):654-60 - PubMed
  11. Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1948-53 - PubMed
  12. PLoS One. 2011;6(5):e20521 - PubMed
  13. Front Microbiol. 2016 May 11;7:689 - PubMed
  14. BMC Microbiol. 2013 Jul 08;13:151 - PubMed
  15. Annu Rev Microbiol. 2014;68:279-96 - PubMed
  16. Mol Ecol Resour. 2014 Sep;14(5):914-28 - PubMed
  17. Biotechnol Biofuels. 2016 Jun 07;9:121 - PubMed
  18. BMC Evol Biol. 2012 Sep 20;12:186 - PubMed
  19. Biochim Biophys Acta. 2000 Nov 30;1543(1):77-85 - PubMed
  20. Eur J Biochem. 2000 Aug;267(16):4988-97 - PubMed
  21. Bioinformatics. 2011 Mar 1;27(5):641-8 - PubMed
  22. FEMS Microbiol Lett. 2009 Feb;291(1):1-16 - PubMed
  23. Biotechnol Biofuels. 2011 Dec 20;4(1):60 - PubMed
  24. Appl Environ Microbiol. 2014 Jan;80(2):574-85 - PubMed
  25. Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5 - PubMed
  26. Front Microbiol. 2017 Sep 21;8:1814 - PubMed
  27. Appl Environ Microbiol. 2015 Feb;81(4):1375-86 - PubMed
  28. Front Microbiol. 2017 Aug 24;8:1605 - PubMed
  29. Appl Environ Microbiol. 2008 May;74(10):2957-66 - PubMed
  30. J Bacteriol. 2004 Jan;186(1):136-45 - PubMed
  31. Microb Ecol. 2010 Nov;60(4):721-9 - PubMed
  32. J Dairy Sci. 2015 May;98(5):3166-81 - PubMed
  33. Bioinformatics. 2005 Apr 1;21(7):1094-103 - PubMed
  34. Nucleic Acids Res. 2000 Nov 15;28(22):4552-7 - PubMed
  35. J Biol Chem. 2010 Sep 24;285(39):30261-73 - PubMed
  36. Appl Environ Microbiol. 2013 Aug;79(15):4620-34 - PubMed
  37. Front Microbiol. 2017 Sep 25;8:1657 - PubMed
  38. Appl Microbiol Biotechnol. 2009 Jun;83(3):425-33 - PubMed
  39. Bacteriol Rev. 1950 Mar;14(1):1-49 - PubMed
  40. J Gen Microbiol. 1975 Dec;91(2):249-62 - PubMed
  41. Nat Rev Microbiol. 2017 Feb;15(2):83-95 - PubMed
  42. Microb Biotechnol. 2012 Sep;5(5):642-53 - PubMed
  43. Plant Physiol. 2010 Jun;153(2):444-55 - PubMed
  44. Environ Microbiol. 2012 Feb;14(2):356-71 - PubMed
  45. Appl Environ Microbiol. 2010 Dec;76(24):7931-7 - PubMed
  46. Appl Environ Microbiol. 1996 Mar;62(3):898-906 - PubMed
  47. Appl Environ Microbiol. 2005 Jul;71(7):3753-60 - PubMed
  48. J Microbiol Methods. 2009 Apr;77(1):8-16 - PubMed
  49. PLoS One. 2011 Apr 19;6(4):e18814 - PubMed
  50. PLoS One. 2013 May 17;8(5):e62544 - PubMed
  51. BMC Bioinformatics. 2009 Dec 15;10:421 - PubMed
  52. Mol Biol Evol. 2005 May;22(5):1273-84 - PubMed
  53. Science. 2011 Jan 28;331(6016):463-7 - PubMed
  54. Gut Microbes. 2012 Jul-Aug;3(4):289-306 - PubMed
  55. BMC Genomics. 2016 May 04;17 :326 - PubMed
  56. J Bacteriol. 1988 Jul;170(7):2914-22 - PubMed
  57. PLoS One. 2013 Nov 05;8(11):e78507 - PubMed
  58. BMC Genomics. 2016 Aug 23;17 :671 - PubMed
  59. FEBS J. 2008 Jul;275(13):3503-11 - PubMed
  60. J Appl Microbiol. 2013 Sep;115(3):644-53 - PubMed
  61. PLoS One. 2009 Aug 14;4(8):e6650 - PubMed

Publication Types