Display options
Share it on

Front Mol Biosci. 2018 Feb 13;5:10. doi: 10.3389/fmolb.2018.00010. eCollection 2018.

Positive Charges on the Surface of Thaumatin Are Crucial for the Multi-Point Interaction with the Sweet Receptor.

Frontiers in molecular biosciences

Tetsuya Masuda, Satomi Kigo, Mayuko Mitsumoto, Keisuke Ohta, Mamoru Suzuki, Bunzo Mikami, Naofumi Kitabatake, Fumito Tani

Affiliations

  1. Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan.
  2. Laboratory of Supramolecular Crystallography, Research Center for State-of-the-Art Functional Protein Analysis, Institute for Protein Research, Osaka University, Suita, Japan.
  3. Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Japan.
  4. Department of Foods and Human Nutrition, Notre Dame Seishin University, Okayama, Japan.

PMID: 29487853 PMCID: PMC5816810 DOI: 10.3389/fmolb.2018.00010

Abstract

Thaumatin, an intensely sweet-tasting protein, elicits sweet taste with a threshold of only 50 nM. Previous studies from our laboratory suggested that the complex model between the T1R2-T1R3 sweet receptor and thaumatin depends critically on the complementarity of electrostatic potentials. In order to further validate this model, we focused on three lysine residues (Lys78, Lys106, and Lys137), which were expected to be part of the interaction sites. Three thaumatin mutants (K78A, K106A, and K137A) were prepared and their threshold values of sweetness were examined. The results showed that the sweetness of K106A was reduced by about three times and those of K78A and K137A were reduced by about five times when compared to wild-type thaumatin. The three-dimensional structures of these mutants were also determined by X-ray crystallographic analyses at atomic resolutions. The overall structures of mutant proteins were similar to that of wild-type but the electrostatic potentials around the mutated sites became more negative. Since the three lysine residues are located in 20-40 Å apart each other on the surface of thaumatin molecule, these results suggest the positive charges on the surface of thaumatin play a crucial role in the interaction with the sweet receptor, and are consistent with a large surface is required for interaction with the sweet receptor, as proposed by the multipoint interaction model named wedge model.

Keywords: SHELXL; atomic resolution; electrostatic potential; lysine; positive charge; sweet-tasting protein

References

  1. Proc Natl Acad Sci U S A. 2004 Sep 28;101(39):14258-63 - PubMed
  2. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011 Jun 1;67(Pt 6):652-8 - PubMed
  3. J Sci Food Agric. 2016 Jul;96(9):3202-6 - PubMed
  4. Biosci Biotechnol Biochem. 2004 Jun;68(6):1403-7 - PubMed
  5. J Appl Crystallogr. 2013 Dec 07;47(Pt 1):462-466 - PubMed
  6. Chem Senses. 2001 Feb;26(2):167-77 - PubMed
  7. Biochim Biophys Acta. 2009 Mar;1794(3):410-20 - PubMed
  8. Proc R Soc Lond B Biol Sci. 1967 Apr 18;167(1009):378-88 - PubMed
  9. J Med Chem. 2005 Aug 25;48(17):5520-9 - PubMed
  10. J Mol Recognit. 2011 Nov-Dec;24(6):1033-42 - PubMed
  11. Br J Pharmacol. 2014 Mar;171(5):1129-41 - PubMed
  12. Cell Mol Life Sci. 2006 Aug;63(16):1876-88 - PubMed
  13. Protein Sci. 2016 Mar;25(3):711-9 - PubMed
  14. Chem Senses. 1995 Feb;20(1):61-8 - PubMed
  15. Eur J Biochem. 2004 Jun;271(11):2231-40 - PubMed
  16. J Mol Biol. 2001 Jan 19;305(3):505-14 - PubMed
  17. Biochim Biophys Acta. 1972 Jan 28;261(1):114-22 - PubMed
  18. Nat Struct Biol. 1998 Jun;5(6):427-31 - PubMed
  19. J Agric Food Chem. 2006 Dec 27;54(26):10129-33 - PubMed
  20. FEBS J. 2008 Jul;275(14):3644-52 - PubMed
  21. Methods Enzymol. 1997;277:319-43 - PubMed
  22. Chem Senses. 2011 Jun;36(5):425-34 - PubMed
  23. J Mol Graph. 1996 Feb;14(1):51-5, 29-32 - PubMed
  24. J Mol Biol. 2006 May 26;359(1):148-58 - PubMed
  25. Proteins. 2003 Feb 15;50(3):437-50 - PubMed
  26. Chem Senses. 2011 Nov;36(9):821-30 - PubMed
  27. Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W665-7 - PubMed
  28. Biosci Biotechnol Biochem. 1992 Dec;56(12):1937-42 - PubMed
  29. Chem Senses. 2005 Mar;30(3):253-64 - PubMed
  30. Biochim Biophys Acta. 2010 Feb;1798(2):82-6 - PubMed
  31. Biochem Biophys Res Commun. 2011 Jul 8;410(3):457-60 - PubMed
  32. J Struct Funct Genomics. 2006 Mar;7(1):15-22 - PubMed
  33. Cell. 2001 Aug 10;106(3):381-90 - PubMed
  34. Nature. 2000 Oct 26;407(6807):971-7 - PubMed
  35. FEBS Lett. 2004 Aug 27;573(1-3):135-8 - PubMed
  36. Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42 - PubMed
  37. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2007 Mar 1;63(Pt 3):162-7 - PubMed
  38. Food Chem. 2013 Jun 1;138(2-3):1370-3 - PubMed
  39. Biochimie. 2014 Nov;106:33-8 - PubMed
  40. J Agric Food Chem. 2009 Jul 8;57(13):5884-90 - PubMed
  41. J Mol Biol. 2010 May 14;398(4):584-99 - PubMed
  42. Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8477-82 - PubMed
  43. PLoS One. 2011 Apr 29;6(4):e19448 - PubMed
  44. J Biol Chem. 2004 Oct 22;279(43):45068-75 - PubMed
  45. FEBS Lett. 2003 Jun 5;544(1-3):33-7 - PubMed
  46. Biochem Biophys Res Commun. 2007 Jun 29;358(2):585-9 - PubMed
  47. Biochem Biophys Res Commun. 2011 Mar 18;406(3):435-8 - PubMed
  48. Biochem Biophys Res Commun. 2012 Oct 19;427(2):431-7 - PubMed
  49. J Mol Biol. 2006 Jul 7;360(2):448-56 - PubMed
  50. FEBS Lett. 1994 Nov 21;355(1):106-8 - PubMed
  51. Biochimie. 2016 Dec;131:20-28 - PubMed
  52. Biochem Biophys Res Commun. 2007 Nov 23;363(3):708-14 - PubMed
  53. J Mol Biol. 1993 Feb 20;229(4):930-44 - PubMed
  54. Methods Enzymol. 1997;276:307-26 - PubMed
  55. Acta Crystallogr D Biol Crystallogr. 2013 Apr;69(Pt 4):642-7 - PubMed
  56. Sci Rep. 2016 Sep 23;6:34045 - PubMed
  57. J Mol Biol. 1992 Dec 5;228(3):893-908 - PubMed
  58. J Biol Chem. 2007 Nov 16;282(46):33252-6 - PubMed
  59. Biochemistry. 1999 Feb 23;38(8):2340-6 - PubMed
  60. Chem Senses. 1995 Oct;20(5):535-43 - PubMed
  61. Proteins. 2013 Jun;81(6):919-25 - PubMed
  62. Chem Senses. 2005 Oct;30(8):667-81 - PubMed
  63. Sci Rep. 2015 Aug 11;5:12947 - PubMed
  64. Food Chem. 2015 Apr 15;173:1179-86 - PubMed
  65. Arch Biochem Biophys. 2000 Apr 15;376(2):259-65 - PubMed
  66. Acta Crystallogr D Biol Crystallogr. 1999 Mar;55(Pt 3):583-601 - PubMed
  67. Nature. 2006 Nov 16;444(7117):288-94 - PubMed
  68. Biomed Res Int. 2016;2016:3647173 - PubMed
  69. Eur J Biochem. 1972 Dec 4;31(2):221-5 - PubMed
  70. Nature. 1992 Jan 30;355(6359):472-5 - PubMed
  71. FEBS Lett. 2002 Aug 28;526(1-3):1-4 - PubMed
  72. J Struct Biol. 2008 Apr;162(1):50-62 - PubMed
  73. FEBS Lett. 1972 Mar;21(1):88-90 - PubMed
  74. Acta Crystallogr D Biol Crystallogr. 1994 Nov 1;50(Pt 6):813-25 - PubMed
  75. FASEB J. 2008 Jul;22(7):2323-30 - PubMed
  76. Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 - PubMed
  77. Eur J Biochem. 1993 Jan 15;211(1-2):281-7 - PubMed
  78. J Mol Biol. 1993 Nov 20;234(2):390-404 - PubMed
  79. Biochimie. 2013 Jul;95(7):1502-5 - PubMed
  80. Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4692-6 - PubMed
  81. J Biol Chem. 1990 Sep 15;265(26):15770-5 - PubMed
  82. Chem Senses. 2009 Oct;34(8):679-83 - PubMed
  83. J Agric Food Chem. 2001 Oct;49(10):4937-41 - PubMed
  84. Biochem Biophys Res Commun. 2011 Sep 16;413(1):41-5 - PubMed
  85. Biosci Biotechnol Biochem. 1998 Mar;62(3):605-6 - PubMed
  86. Sci Rep. 2016 Feb 03;6:20255 - PubMed

Publication Types