Display options
Share it on

Nanomaterials (Basel). 2018 Mar 07;8(3). doi: 10.3390/nano8030146.

Phase Transition-Driven Nanoparticle Assembly in Liquid Crystal Droplets.

Nanomaterials (Basel, Switzerland)

Charles N Melton, Sheida T Riahinasab, Amir Keshavarz, Benjamin J Stokes, Linda S Hirst

Affiliations

  1. Department of Physics, School of Natural Sciences, University of California, 5200 North Lake Rd., Merced, CA 95343, USA. [email protected].
  2. Department of Physics, School of Natural Sciences, University of California, 5200 North Lake Rd., Merced, CA 95343, USA. [email protected].
  3. Chemistry and Chemical Biology Unit, School of Natural Sciences, University of California, 5200 North Lake Rd., Merced, CA 95343, USA. [email protected].
  4. Chemistry and Chemical Biology Unit, School of Natural Sciences, University of California, 5200 North Lake Rd., Merced, CA 95343, USA. [email protected].
  5. Department of Physics, School of Natural Sciences, University of California, 5200 North Lake Rd., Merced, CA 95343, USA. [email protected].

PMID: 29518904 PMCID: PMC5869637 DOI: 10.3390/nano8030146

Abstract

When nanoparticle self-assembly takes place in an anisotropic liquid crystal environment, fascinating new effects can arise. The presence of elastic anisotropy and topological defects can direct spatial organization. An important goal in nanoscience is to direct the assembly of nanoparticles over large length scales to produce macroscopic composite materials; however, limitations on spatial ordering exist due to the inherent disorder of fluid-based methods. In this paper we demonstrate the formation of quantum dot clusters and spherical capsules suspended within spherical liquid crystal droplets as a method to position nanoparticle clusters at defined locations. Our experiments demonstrate that particle sorting at the isotropic-nematic phase front can dominate over topological defect-based assembly. Notably, we find that assembly at the nematic phase front can force nanoparticle clustering at energetically unfavorable locations in the droplets to form stable hollow capsules and fractal clusters at the droplet centers.

Keywords: nanoparticle; nematic liquid crystal; phase transition; quantum dot; self-assembly

Conflict of interest statement

The author declares no conflict of interest.

References

  1. Soft Matter. 2015 Jan 14;11(2):255-60 - PubMed
  2. Chemphyschem. 2014 May 19;15(7):1413-21 - PubMed
  3. Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5297-302 - PubMed
  4. Phys Rev Lett. 2013 Nov 27;111(22):227801 - PubMed
  5. Soft Matter. 2014 Nov 28;10(44):8821-8 - PubMed
  6. Rep Prog Phys. 2016 May;79(5):056502 - PubMed
  7. Soft Matter. 2015 Mar 7;11(9):1701-7 - PubMed
  8. Adv Mater. 2016 Mar 23;28(12):2353-8 - PubMed
  9. Science. 2006 Aug 18;313(5789):954-8 - PubMed
  10. Sci Rep. 2017 Dec 19;7(1):17788 - PubMed
  11. Langmuir. 2013 Jul 30;29(30):9301-9 - PubMed
  12. J Am Chem Soc. 2006 Mar 15;128(10):3248-55 - PubMed
  13. Phys Rev Lett. 2008 Jul 18;101(3):037802 - PubMed
  14. Nat Mater. 2006 Apr;5(4):265-70 - PubMed
  15. Nat Mater. 2016 Jan;15(1):106-12 - PubMed
  16. Science. 1997 Mar 21;275(5307):1770-3 - PubMed
  17. Adv Mater. 2012 Mar 15;24(11):1461-5 - PubMed
  18. Opt Lett. 1998 Sep 1;23(17):1331-3 - PubMed
  19. Phys Rev Lett. 2007 Feb 23;98(8):087801 - PubMed
  20. J Phys Chem B. 2011 Dec 8;115(48):13989-93 - PubMed
  21. Phys Rev Lett. 2009 Dec 31;103(26):267801 - PubMed

Publication Types