Display options
Share it on

Biomedicines. 2018 Mar 07;6(1). doi: 10.3390/biomedicines6010029.

Role of Akt Isoforms Controlling Cancer Stem Cell Survival, Phenotype and Self-Renewal.

Biomedicines

Sergio Rivas, Carla Gómez-Oro, Inés M Antón, Francisco Wandosell

Affiliations

  1. Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain. [email protected].
  2. Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain. [email protected].
  3. Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain. [email protected].
  4. Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain. [email protected].
  5. Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain. [email protected].
  6. Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain. [email protected].
  7. Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain. [email protected].
  8. Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain. [email protected].

PMID: 29518912 PMCID: PMC5874686 DOI: 10.3390/biomedicines6010029

Abstract

The cancer stem cell (CSC) hypothesis suggests that tumours are maintained by a subpopulation of cells with stem cell properties. Although the existence of CSCs was initially described in human leukaemia, less evidence exists for CSCs in solid tumours. Recently, a CD133+ cell subpopulation was isolated from human brain tumoursexhibiting stem cell properties in vitro as well as the capacity to initiate tumours in vivo. In the present work, we try to summarize the data showing that some elements of the Phosphoinositide 3-kinase Class I (PI3K)/ Thymoma viral oncogene protein kinase (Akt) pathway, such the activity of PI3K Class I or Akt2, are necessary to maintain the CSC-like phenotype as well as survival of CSCs (also denoted as tumour-initiating cells (TICs)). Our data and other laboratory data permit a working hypothesis in which each Akt isoform plays an important and specific role in CSC/TIC growth, self-renewal, maintaining survival, and epithelial-mesenchymal transition (EMT) phenotype, not only in breast cancer, but also in glioma. We suggest that a more complete understanding is needed of the possible roles of isoforms in human tumours (iso-signalling determination). Thus, a comprehensive analysis of how hierarchical signalling is assembled during oncogenesis, how cancer landmarks are interconnected to favour CSC and tumour growth, and how some protein isoforms play a specific role in CSCs to ensure that survival and proliferation must be done in order to propose/generate new therapeutic approaches (alone or in combination with existing ones) to use against cancer.

Keywords: Akt; CSCs; PI3K; TICs; glioma; proliferation; signaling in cancer; survival

Conflict of interest statement

The authors declare no conflict of interest.

References

  1. Cancer Res. 2007 Jan 1;67(1):167-77 - PubMed
  2. Nature. 2012 Aug 23;488(7412):522-6 - PubMed
  3. Acta Neuropathol. 2016 Jun;131(6):803-20 - PubMed
  4. Oncogene. 2010 Aug 26;29(34):4741-51 - PubMed
  5. Cancer Res. 2006 Oct 1;66(19):9339-44 - PubMed
  6. Proc Natl Acad Sci U S A. 2013 Apr 23;110(17 ):6829-34 - PubMed
  7. PLoS One. 2012;7(4):e32715 - PubMed
  8. Cancer Res. 2010 Jun 1;70(11):4260-4 - PubMed
  9. J Neurosci Res. 2003 Dec 15;74(6):838-51 - PubMed
  10. Oncologist. 2011;16 Suppl 1:12-9 - PubMed
  11. Adv Cancer Res. 2009;102:19-65 - PubMed
  12. Development. 2005 Jul;132(13):2943-54 - PubMed
  13. Cancer Res. 2017 Apr 15;77(8):2134-2147 - PubMed
  14. Nature. 1994 Feb 17;367(6464):645-8 - PubMed
  15. Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):13820-5 - PubMed
  16. Cell Cycle. 2009 Aug 15;8(16):2502-8 - PubMed
  17. Mol Cell Biol. 2005 Mar;25(5):1869-78 - PubMed
  18. Cell. 2014 Jul 3;158(1):157-70 - PubMed
  19. Dev Cell. 2007 Feb;12 (2):221-34 - PubMed
  20. Cancer Cell. 2006 Oct;10(4):269-80 - PubMed
  21. Science. 2012 Nov 23;338(6110):1080-4 - PubMed
  22. Proc Natl Acad Sci U S A. 1987 Jul;84(14):5034-7 - PubMed
  23. Nat Rev Drug Discov. 2009 Aug;8(8):627-44 - PubMed
  24. J Cell Biol. 2005 Dec 19;171(6):1023-34 - PubMed
  25. Blood. 2010 May 27;115(21):4237-46 - PubMed
  26. Cell Death Dis. 2012 Oct 04;3:e399 - PubMed
  27. Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):15178-83 - PubMed
  28. Blood. 1997 Dec 15;90(12):5013-21 - PubMed
  29. Mol Cell Biol. 2002 Nov;22(22):7831-41 - PubMed
  30. Cell. 2011 Mar 4;144(5):646-74 - PubMed
  31. J Oncol. 2012;2012:376894 - PubMed
  32. J Neurooncol. 2016 Oct;130(1):43-52 - PubMed
  33. J Cell Physiol. 2008 Nov;217(2):468-77 - PubMed
  34. Cell Rep. 2012 Oct 25;2(4):951-63 - PubMed
  35. Nat Rev Mol Cell Biol. 2010 Jan;11(1):9-22 - PubMed
  36. Cell. 2008 May 16;133(4):704-15 - PubMed
  37. Curr Opin Genet Dev. 2008 Feb;18(1):48-53 - PubMed
  38. Cancer Cell. 2002 Apr;1(3):269-77 - PubMed
  39. J Biol Chem. 2001 Oct 19;276(42):38349-52 - PubMed
  40. Cancer Metastasis Rev. 2003 Dec;22(4):375-84 - PubMed
  41. Cancer Res. 2014 Feb 1;74(3):964-73 - PubMed
  42. Lab Invest. 2008 Aug;88(8):808-15 - PubMed
  43. Sci Signal. 2011 Feb 01;4(158):ra6 - PubMed
  44. Genes Dev. 2008 Feb 15;22(4):436-48 - PubMed
  45. Cancer Res. 2003 Sep 15;63(18):5821-8 - PubMed
  46. Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):3787-92 - PubMed
  47. Proteomics. 2012 Jun;12 (12 ):2045-59 - PubMed
  48. Nature. 2010 Dec 9;468(7325):824-8 - PubMed
  49. Nature. 2004 Nov 18;432(7015):396-401 - PubMed
  50. Annu Rev Cell Dev Biol. 2007;23:675-99 - PubMed
  51. Nat Rev Mol Cell Biol. 2012 Feb 23;13(3):195-203 - PubMed
  52. Cell. 2007 Jun 29;129(7):1261-74 - PubMed
  53. Cancer Res. 2004 Oct 1;64(19):7011-21 - PubMed
  54. Cell Prolif. 2003 Oct;36 Suppl 1:59-72 - PubMed
  55. Oncogene. 2017 Jun 22;36(25):3515-3527 - PubMed
  56. EMBO Rep. 2014 Mar;15(3):244-53 - PubMed
  57. Oncogene. 2010 Oct 14;29(41):5545-55 - PubMed
  58. Cancer Cell. 2008 Dec 9;14 (6):458-70 - PubMed
  59. Proc Natl Acad Sci U S A. 2007 May 1;104(18):7438-43 - PubMed
  60. Nature. 2001 Nov 1;414(6859):105-11 - PubMed
  61. Nat Med. 1997 Jul;3(7):730-7 - PubMed
  62. Cancer Res. 2007 May 1;67(9):4010-5 - PubMed
  63. Nat Rev Mol Cell Biol. 2006 Feb;7(2):131-42 - PubMed
  64. Neuro Oncol. 2010 Mar;12 (3):221-32 - PubMed
  65. J Neurosci Res. 2002 Sep 15;69(6):976-86 - PubMed
  66. Cancer Res. 2017 Sep 15;77(18):5142-5157 - PubMed
  67. PLoS One. 2008 Aug 06;3(8):e2888 - PubMed
  68. Cell Rep. 2016 Nov 15;17 (8):1962-1977 - PubMed
  69. Cells Tissues Organs. 2005;179(1-2):56-65 - PubMed
  70. Cell. 2011 Nov 11;147(4):759-72 - PubMed
  71. Proc Natl Acad Sci U S A. 2011 Mar 15;108(11):4274-80 - PubMed
  72. Biochem Soc Trans. 2004 Apr;32(Pt 2):350-4 - PubMed
  73. Dev Cell. 2010 Apr 20;18(4):592-604 - PubMed
  74. Dev Cell. 2007 Apr;12(4):487-502 - PubMed
  75. Nat Rev Cancer. 2003 Jun;3(6):459-65 - PubMed
  76. J Clin Invest. 2003 Jul;112(2):197-208 - PubMed
  77. Stem Cells. 2015 Mar;33(3):646-60 - PubMed
  78. Oncogene. 2008 Sep 18;27(41):5497-510 - PubMed
  79. Cancer Res. 2009 Jun 15;69(12):5057-64 - PubMed
  80. PLoS Biol. 2009 Jun 2;7(6):e1000121 - PubMed
  81. Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14720-5 - PubMed
  82. Biochem Soc Trans. 2007 Apr;35(Pt 2):231-5 - PubMed
  83. Nature. 2007 Jul 26;448(7152):439-44 - PubMed
  84. Cancer Res. 2004 Jul 1;64(13):4394-9 - PubMed

Publication Types