Display options
Share it on

Phys Rev E. 2018 Feb;97(2):023203. doi: 10.1103/PhysRevE.97.023203.

Hydrodynamic evolution of plasma waveguides for soft-x-ray amplifiers.

Physical review. E

Eduardo Oliva, Adrien Depresseux, Manuel Cotelo, Agustín Lifschitz, Fabien Tissandier, Julien Gautier, Gilles Maynard, Pedro Velarde, Stéphane Sebban

Affiliations

  1. Departamento de Ingeniería Energética, E.T.S.I. Industriales, Universidad Politécnica de Madrid, Madrid 28006, Spain.
  2. Instituto de Fusión Nuclear, Universidad Politécnica de Madrid, Madrid 28006, Spain.
  3. Laboratoire d'Optique Appliquée, ENSTA ParisTech, École Polytechnique ParisTech, CNRS, UMR7639, 91761, Palaiseau, France.
  4. Laboratoire de Physique des Gaz et des Plasmas, CNRS, Université Paris-Sud bat. 210, 91405 Orsay, France.

PMID: 29548124 DOI: 10.1103/PhysRevE.97.023203

Abstract

High-density, collisionally pumped plasma-based soft-x-ray lasers have recently delivered hundreds of femtosecond pulses, breaking the longstanding barrier of one picosecond. To pump these amplifiers an intense infrared pulse must propagate focused throughout all the length of the amplifier, which spans several Rayleigh lengths. However, strong nonlinear effects hinder the propagation of the laser beam. The use of a plasma waveguide allows us to overcome these drawbacks provided the hydrodynamic processes that dominate the creation and posterior evolution of the waveguide are controlled and optimized. In this paper we present experimental measurements of the radial density profile and transmittance of such waveguide, and we compare them with numerical calculations using hydrodynamic and particle-in-cell codes. Controlling the properties (electron density value and radial gradient) of the waveguide with the help of numerical codes promises the delivery of ultrashort (tens of femtoseconds), coherent soft-x-ray pulses.

Publication Types