Display options
Share it on

Investig Magn Reson Imaging. 2017 Dec;21(4):210-222. doi: 10.13104/imri.2017.21.4.210. Epub 2017 Dec 31.

Highly Accelerated SSFP Imaging with Controlled Aliasing in Parallel Imaging and integrated-SSFP (CAIPI-iSSFP).

Investigative magnetic resonance imaging

Thomas Martin, Yi Wang, Shams Rashid, Xingfeng Shao, Steen Moeller, Peng Hu, Kyunghyun Sung, Danny Jj Wang

Affiliations

  1. Department of Radiological Sciences, University of California Los Angeles, California, USA.
  2. Philips, MR Clinical Science NA, Florida, USA.
  3. Laboratory of FMRI Technology (LOFT), Stevens Neuroimaging and Informatics Institute, University of Southern California, California, USA.
  4. Center of Magnetic Resonance Research, University of Minnesota, Minnesota, USA.

PMID: 29520372 PMCID: PMC5839645 DOI: 10.13104/imri.2017.21.4.210

Abstract

PURPOSE: To develop a novel combination of controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) with integrated SSFP (CAIPI-iSSFP) for accelerated SSFP imaging without banding artifacts at 3T.

MATERIALS AND METHODS: CAIPI-iSSFP was developed by adding a dephasing gradient to the balanced SSFP (bSSFP) pulse sequence with a gradient area that results in 2π dephasing across a single pixel. Extended phase graph (EPG) simulations were performed to show the signal behaviors of iSSFP, bSSFP, and RF-spoiled gradient echo (SPGR) sequences.

RESULTS: Banding artifacts were removed using CAIPI-iSSFP compared to CAIPI-bSSFP up to an SMS factor of 4 and 3 on brain and liver imaging, respectively. The relative CNRs between gray and white matter were on average 18% lower in CAIPI-iSSFP compared to that of CAIPI-bSSFP.

CONCLUSION: This study demonstrated that CAIPI-iSSFP provides up to a factor of four acceleration, while minimizing the banding artifacts with up to a 20% decrease in the relative CNR.

Keywords: CAIPI-bSSFP; CAIPI-iSSFP; CAIPIRINHA; Extended phase graphs (EPG); Simultaneous multi-slice (SMS)

References

  1. J Magn Reson Imaging. 2013 Jul;38(1):2-11 - PubMed
  2. Magn Reson Med. 2015 Mar;73(3):929-938 - PubMed
  3. Magn Reson Med. 2008 Oct;60(4):895-907 - PubMed
  4. Magn Reson Med. 2011 Jan;65(1):157-64 - PubMed
  5. Eur Radiol. 2003 Nov;13(11):2409-18 - PubMed
  6. Magn Reson Med. 2005 Mar;53(3):684-91 - PubMed
  7. Magn Reson Med. 2005 Oct;54(4):901-7 - PubMed
  8. Neuroimage. 2015 Jun;113:279-88 - PubMed
  9. Magn Reson Med. 2014 Mar;71(3):927-33 - PubMed
  10. J Magn Reson. 2017 Mar;276:22-30 - PubMed
  11. Radiology. 1990 May;175(2):545-52 - PubMed
  12. J Magn Reson Imaging. 2012 Dec;36(6):1300-13 - PubMed
  13. Magn Reson Med. 1988 Nov;8(3):248-60 - PubMed
  14. J Magn Reson Imaging. 1999 Apr;9(4):531-8 - PubMed
  15. J Mol Biol. 1968 Sep 28;36(3):291-304 - PubMed
  16. Phys Med Biol. 2016 Feb 21;61(4):1692-704 - PubMed
  17. AJR Am J Roentgenol. 1987 Jun;148(6):1251-8 - PubMed
  18. Magn Reson Med. 2006 Mar;55(3):549-56 - PubMed
  19. J Magn Reson Imaging. 1991 Sep-Oct;1(5):569-77 - PubMed
  20. IEEE Trans Med Imaging. 1987;6(2):157-64 - PubMed
  21. Magn Reson Med. 2015 Jun;73(6):2152-62 - PubMed
  22. Magn Reson Med. 2012 May;67(5):1210-24 - PubMed
  23. Magn Reson Med. 1999 Nov;42(5):952-62 - PubMed
  24. J Magn Reson Imaging. 2001 Feb;13(2):313-7 - PubMed
  25. J Comput Assist Tomogr. 1987 Jan-Feb;11(1):31-4 - PubMed
  26. J Magn Reson Imaging. 1998 Jan-Feb;8(1):203-8 - PubMed
  27. Magn Reson Med. 1991 Oct;21(2):251-63 - PubMed
  28. J Magn Reson Imaging. 2015 Feb;41(2):266-95 - PubMed
  29. Neuroimage. 2012 Oct 15;63(1):569-80 - PubMed
  30. Magn Reson Med. 2016 Dec;76(6):1764-1774 - PubMed

Publication Types

Grant support