Display options
Share it on

Front Behav Neurosci. 2018 Feb 09;12:3. doi: 10.3389/fnbeh.2018.00003. eCollection 2018.

Theta and Alpha Oscillations in Attentional Interaction during Distracted Driving.

Frontiers in behavioral neuroscience

Yu-Kai Wang, Tzyy-Ping Jung, Chin-Teng Lin

Affiliations

  1. Centre for Artificial Intelligence, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia.
  2. Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California, San Diego, San Diego, CA, United States.

PMID: 29479310 PMCID: PMC5811509 DOI: 10.3389/fnbeh.2018.00003

Abstract

Performing multiple tasks simultaneously usually affects the behavioral performance as compared with executing the single task. Moreover, processing multiple tasks simultaneously often involve more cognitive demands. Two visual tasks, lane-keeping task and mental calculation, were utilized to assess the brain dynamics through 32-channel electroencephalogram (EEG) recorded from 14 participants. A 400-ms stimulus onset asynchrony (SOA) factor was used to induce distinct levels of attentional requirements. In the dual-task conditions, the deteriorated behavior reflected the divided attention and the overlapping brain resources used. The frontal, parietal and occipital components were decomposed by independent component analysis (ICA) algorithm. The event- and response-related theta and alpha oscillations in selected brain regions were investigated first. The increased theta oscillation in frontal component and decreased alpha oscillations in parietal and occipital components reflect the cognitive demands and attentional requirements as executing the designed tasks. Furthermore, time-varying interactive over-additive (O-Add), additive (Add) and under-additive (U-Add) activations were explored and summarized through the comparison between the summation of the elicited spectral perturbations in two single-task conditions and the spectral perturbations in the dual task. Add and U-Add activations were observed while executing the dual tasks. U-Add theta and alpha activations dominated the posterior region in dual-task situations. Our results show that both deteriorated behaviors and interactive brain activations should be comprehensively considered for evaluating workload or attentional interaction precisely.

Keywords: alpha; dual-task; electroencephalogram (EEG); independent component analysis (ICA); interactive attention; stimulus onset asynchrony (SOA); theta

References

  1. J Neurosci. 2006 Feb 8;26(6):1669-72 - PubMed
  2. Int J Psychophysiol. 2013 Nov;90(2):172-9 - PubMed
  3. PLoS One. 2012;7(7):e41784 - PubMed
  4. Brain Res Bull. 2012 Jan 4;87(1):103-8 - PubMed
  5. Cereb Cortex. 1997 Jun;7(4):374-85 - PubMed
  6. Front Psychol. 2011 Jul 05;2:154 - PubMed
  7. Neuroreport. 2008 Jul 16;19(11):1127-30 - PubMed
  8. J Neuroeng Rehabil. 2011 Feb 18;8:11 - PubMed
  9. Am J Clin Hypn. 2001 Oct;44(2):127-39 - PubMed
  10. Brain Res. 2008 Apr 18;1205:70-80 - PubMed
  11. Conscious Cogn. 2010 Dec;19(4):1110-8 - PubMed
  12. Front Hum Neurosci. 2015 Feb 19;9:86 - PubMed
  13. Brain Res Cogn Brain Res. 2001 Aug;12(1):145-52 - PubMed
  14. Electroencephalogr Clin Neurophysiol. 1995 Mar;94(3):175-82 - PubMed
  15. Neurosci Biobehav Rev. 2014 Jul;44:58-75 - PubMed
  16. Neuroimage. 2001 Aug;14(2):417-26 - PubMed
  17. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3567-72 - PubMed
  18. Int J Neural Syst. 2016 Jun;26(4):1650018 - PubMed
  19. J Cogn Neurosci. 2011 Dec;23(12):3983-97 - PubMed
  20. IEEE Trans Biomed Eng. 2015 Nov;62(11):2553-67 - PubMed
  21. IEEE Trans Neural Syst Rehabil Eng. 2015 Nov;23(6):1085-94 - PubMed
  22. J Neurophysiol. 2006 Mar;95(3):1630-8 - PubMed
  23. Front Hum Neurosci. 2013 Feb 28;7:53 - PubMed
  24. Proc IEEE Inst Electr Electron Eng. 2001 Jul 1;89(7):1107-1122 - PubMed
  25. Neuroimage. 2009 Oct 1;47(4):1735-46 - PubMed
  26. Prog Brain Res. 2013;207:351-77 - PubMed
  27. Neuron. 2006 Dec 21;52(6):1109-20 - PubMed
  28. Int J Psychophysiol. 2005 Aug;57(2):97-103 - PubMed
  29. Neuroimage. 2011 Feb 1;54(3):1765-73 - PubMed
  30. Exp Psychol. 2005;52(2):99-108 - PubMed
  31. Psychol Rev. 2008 Jan;115(1):101-30 - PubMed
  32. Psychol Bull. 1994 Sep;116(2):220-44 - PubMed
  33. Hum Brain Mapp. 2007 Aug;28(8):793-803 - PubMed
  34. Neural Plast. 2007;2007:60803 - PubMed
  35. Brain Res Brain Res Rev. 1999 Apr;29(2-3):169-95 - PubMed
  36. Neuroimage. 2012 Jan 2;59(1):25-35 - PubMed
  37. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:4768-71 - PubMed
  38. Trends Cogn Sci. 2005 Jun;9(6):296-305 - PubMed
  39. Neuroimage. 2014 Oct 15;100:60-74 - PubMed
  40. Neuroimage. 2007 May 15;36(1):245-55 - PubMed
  41. Neurosci Lett. 1998 Mar 13;244(2):73-6 - PubMed
  42. Neuroimage. 2003 Jun;19(2 Pt 1):210-25 - PubMed
  43. Hum Brain Mapp. 2011 Dec;32(12):2045-53 - PubMed
  44. Behav Brain Funct. 2012 May 28;8:26 - PubMed
  45. Brain Res Cogn Brain Res. 1996 Dec;5(1-2):175-81 - PubMed
  46. Neurosci Lett. 2005 Jan 20;373(3):212-7 - PubMed

Publication Types