Display options
Share it on

Chemistry. 2018 Apr 20;24(23):6262-6268. doi: 10.1002/chem.201800508. Epub 2018 Apr 06.

Anthracene Bisureas as Powerful and Accessible Anion Carriers.

Chemistry (Weinheim an der Bergstrasse, Germany)

Christopher M Dias, Hennie Valkenier, Anthony P Davis

Affiliations

  1. School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
  2. Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, CP165/64, 1050, Brussels, Belgium.

PMID: 29493830 PMCID: PMC5947650 DOI: 10.1002/chem.201800508

Abstract

Synthetic anion carriers (anionophores) have potential as biomedical research tools and as treatments for conditions arising from defective natural transport systems (notably cystic fibrosis). Highly active anionophores that are readily accessible and easily deliverable are especially valuable. Previous work has resulted in steroid and trans-decalin based anionophores with exceptional activity for chloride/nitrate exchange in vesicles, but poor accessibility and deliverability. This work shows that anthracene 1,8-bisureas can fulfil all three criteria. In particular, a bis-nitrophenyl derivative is prepared in two steps from commercial starting materials, yet shows comparable transport activity to the best currently known. Moreover, unlike earlier highly active systems, it does not need to be preincorporated in test vesicles but can be introduced subsequent to vesicle formation. This transporter also shows the ability to transfer between vesicles, and is therefore uniquely effective for anion transport at low transporter loadings. The results suggest that anthracene bisureas are promising candidates for application in biological research and medicine.

© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Keywords: anion transport; membranes; receptors; supramolecular chemistry; ureas

References

  1. Chem Soc Rev. 2011 May;40(5):2453-74 - PubMed
  2. J Org Chem. 2016 Mar 4;81(5):1746-56 - PubMed
  3. Nat Genet. 1997 Oct;17(2):171-8 - PubMed
  4. Nat Chem. 2016 Jan;8(1):24-32 - PubMed
  5. Chemistry. 2008;14(31):9599-606 - PubMed
  6. Chem Soc Rev. 2010 Oct;39(10):3843-62 - PubMed
  7. Chem Commun (Camb). 2015 Sep 28;51(75):14235-8 - PubMed
  8. J Am Chem Soc. 2014 Sep 3;136(35):12507-12 - PubMed
  9. Chem Commun (Camb). 2010 Sep 14;46(34):6252-4 - PubMed
  10. Chemistry. 2018 Apr 20;24(23):6262-6268 - PubMed
  11. Acc Chem Res. 2013 Dec 17;46(12):2791-800 - PubMed
  12. Nature. 1996 Feb 1;379(6564):445-9 - PubMed
  13. Chem Soc Rev. 2017 May 9;46(9):2497-2519 - PubMed
  14. Chem Commun (Camb). 2016 Jun 14;52(47):7474-7 - PubMed
  15. Chemistry. 2016 Feb;22(6):2004-2011 - PubMed
  16. Org Biomol Chem. 2005 Apr 21;3(8):1495-500 - PubMed
  17. Org Biomol Chem. 2018 Feb 14;16(7):1083-1087 - PubMed
  18. Angew Chem Int Ed Engl. 2003 Oct 20;42(40):4931-3 - PubMed
  19. Chem Sci. 2016 Mar 1;7(3):1768-1772 - PubMed
  20. Chem Commun (Camb). 2010 Apr 7;46(13):2227-9 - PubMed
  21. Chem Soc Rev. 2011 Mar;40(3):1305-23 - PubMed
  22. Chem Soc Rev. 2007 Feb;36(2):348-57 - PubMed
  23. Nat Genet. 1996 Jun;13(2):183-8 - PubMed
  24. Chem Commun (Camb). 2014 Oct 18;50(81):12050-3 - PubMed
  25. Nature. 2006 Mar 23;440(7083):440-7 - PubMed
  26. J Am Chem Soc. 2011 Feb 16;133(6):1614-7 - PubMed
  27. Nat Rev Mol Cell Biol. 2009 May;10(5):344-52 - PubMed
  28. Nature. 1993 Mar 11;362(6416):160-4 - PubMed
  29. J Am Chem Soc. 2011 Sep 7;133(35):14136-48 - PubMed
  30. Cell. 1993 Jul 2;73(7):1251-4 - PubMed
  31. J Org Chem. 2015 May 1;80(9):4235-43 - PubMed
  32. Angew Chem Int Ed Engl. 2015 Apr 7;54(15):4592-6 - PubMed
  33. Chem Rev. 2015 Aug 12;115(15):8038-155 - PubMed
  34. J Org Chem. 2004 Jul 23;69(15):5155-7 - PubMed
  35. Acc Chem Res. 2013 Dec 17;46(12):2898-909 - PubMed
  36. J Org Chem. 2007 Mar 30;72(7):2289-96 - PubMed
  37. Angew Chem Int Ed Engl. 2014 May 26;53(22):5609-13 - PubMed
  38. Chem Commun (Camb). 2016 Oct 25;52(87):12792-12805 - PubMed
  39. Angew Chem Int Ed Engl. 2012 Apr 27;51(18):4426-30 - PubMed

Publication Types

Grant support