Display options
Share it on

J Dev Biol. 2018 Jan 30;6(1). doi: 10.3390/jdb6010003.

Taking the Occam's Razor Approach to Hedgehog Lipidation and Its Role in Development.

Journal of developmental biology

Dominique Manikowski, Philipp Kastl, Kay Grobe

Affiliations

  1. Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence, University of Münster, D-48149 Münster, Germany. [email protected].
  2. Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence, University of Münster, D-48149 Münster, Germany. [email protected].
  3. Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence, University of Münster, D-48149 Münster, Germany. [email protected].

PMID: 29615552 PMCID: PMC5875562 DOI: 10.3390/jdb6010003

Abstract

All Hedgehog (Hh) proteins signal from producing cells to distant receiving cells despite being synthesized as N-and C-terminally lipidated, membrane-tethered molecules. To explain this paradoxical situation, over the past 15 years, several hypotheses have been postulated that tie directly into this property, such as Hh transport on cellular extensions called cytonemes or on secreted vesicles called lipophorins and exosomes. The alternative situation that tight membrane association merely serves to prevent unregulated Hh solubilization has been addressed by biochemical and structural studies suggesting Hh extraction from the membrane or proteolytic Hh release. While some of these models may act in different organisms, tissues or developmental programs, others may act together to specify Hh short- and long-range signaling in the same tissues. To test and rank these possibilities, we here review major models of Hh release and transport and hypothesize that the (bio)chemical and physical properties of firmly established, homologous, and functionally essential biochemical Hh modifications are adapted to specify and determine interdependent steps of Hh release, transport and signaling, while ruling out other steps. This is also described by the term "congruence", meaning that the logical combination of biochemical Hh modifications can reveal their true functional implications. This combined approach reveals potential links between models of Hh release and transport that were previously regarded as unrelated, thereby expanding our view of how Hhs can steer development in a simple, yet extremely versatile, manner.

Keywords: Hedgehog; morphogen transport; posttranslational modification

Conflict of interest statement

The authors declare no conflict of interest.

References

  1. Cell. 1996 Nov 1;87(3):553-63 - PubMed
  2. Nat Struct Mol Biol. 2009 Jul;16(7):691-7 - PubMed
  3. Cell. 2001 Jun 1;105(5):599-612 - PubMed
  4. Immunobiology. 2007;212(4-5):279-88 - PubMed
  5. Science. 1998 Nov 13;282(5392):1281-4 - PubMed
  6. Nat Struct Mol Biol. 2009 Jul;16(7):698-703 - PubMed
  7. J Biol Chem. 1994 Oct 21;269(42):26280-5 - PubMed
  8. Proc Natl Acad Sci U S A. 2011 Aug 2;108(31):12591-8 - PubMed
  9. Development. 1996 Dec;123:153-64 - PubMed
  10. Cell. 2012 Jun 22;149(7):1565-77 - PubMed
  11. Development. 2014 Sep;141(18):3445-57 - PubMed
  12. Dev Biol. 2006 Jun 1;294(1):104-18 - PubMed
  13. Genes Dev. 2004 Mar 15;18(6):641-59 - PubMed
  14. Science. 2011 Apr 15;332(6027):354-8 - PubMed
  15. J Biol Chem. 2012 May 25;287(22):17905-13 - PubMed
  16. Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):E5866-E5875 - PubMed
  17. Nature. 2005 Sep 22;437(7058):560-3 - PubMed
  18. Cell. 1994 Feb 11;76(3):449-60 - PubMed
  19. Development. 2004 Feb;131(3):601-11 - PubMed
  20. PLoS Comput Biol. 2011 Mar;7(3):e1002020 - PubMed
  21. Mol Biol Cell. 2015 Dec 15;26(25):4700-17 - PubMed
  22. J Biol Chem. 2015 Feb 6;290(6):3293-307 - PubMed
  23. Proc Natl Acad Sci U S A. 2004 Jun 8;101(23):8531-6 - PubMed
  24. Sci Rep. 2016 May 20;6:26435 - PubMed
  25. Cell. 1999 Dec 23;99(7):803-15 - PubMed
  26. Nat Rev Immunol. 2007 Sep;7(9):726-35 - PubMed
  27. Development. 2008 Mar;135(6):1097-106 - PubMed
  28. Mol Cell Biol. 1995 Apr;15(4):2294-303 - PubMed
  29. J Biol Chem. 2006 Feb 17;281(7):4087-93 - PubMed
  30. Biochem J. 2009 Jul 29;422(1):119-28 - PubMed
  31. Nature. 1996 Oct 3;383(6599):407-13 - PubMed
  32. Matrix Biol. 1997 Apr;16(1):41-5 - PubMed
  33. Cell. 1995 May 5;81(3):445-55 - PubMed
  34. Stem Cells Int. 2017;2017:5714608 - PubMed
  35. J Biol Chem. 2002 Nov 29;277(48):46364-73 - PubMed
  36. Cell. 2004 Aug 20;118(4):505-16 - PubMed
  37. Blood. 2012 May 17;119(20):4741-51 - PubMed
  38. J Dev Biol. 2016 Jul 20;4(3):23 - PubMed
  39. J Cell Sci. 2014 Apr 15;127(Pt 8):1726-37 - PubMed
  40. Nature. 1980 Oct 30;287(5785):795-801 - PubMed
  41. J Biol Chem. 2010 Aug 20;285(34):26570-80 - PubMed
  42. PLoS One. 2014 Mar 07;9(3):e89899 - PubMed
  43. Blood. 2009 Mar 5;113(10 ):2217-28 - PubMed
  44. Nature. 2001 Jun 7;411(6838):716-20 - PubMed
  45. J Cell Sci. 1999 Dec;112 ( Pt 23):4405-14 - PubMed
  46. Cell Rep. 2015 Mar 3;10 (8):1280-1287 - PubMed
  47. J Cell Sci. 2015 Jan 1;128(1):129-39 - PubMed
  48. Development. 2006 Feb;133(3):407-18 - PubMed
  49. Dev Cell. 2006 Feb;10(2):167-76 - PubMed
  50. Development. 2007 Jun;134(11):2095-105 - PubMed
  51. Science. 2014 Feb 21;343(6173):1244624 - PubMed
  52. Dev Biol. 2016 Jul 15;415(2):198-215 - PubMed
  53. Biochemistry. 2001 Apr 10;40(14 ):4359-71 - PubMed
  54. J Biol Chem. 2010 May 21;285(21):15950-9 - PubMed
  55. Development. 2003 Sep;130(17 ):3951-63 - PubMed
  56. Dev Cell. 2015 Feb 9;32(3):290-303 - PubMed
  57. Science. 2001 Sep 14;293(5537):2080-4 - PubMed
  58. Nat Cell Biol. 2013 Nov;15(11):1269-81 - PubMed
  59. Int Rev Cell Mol Biol. 2010;282:135-63 - PubMed
  60. J Biol Chem. 2012 Dec 14;287(51):42881-9 - PubMed
  61. Nature. 2013 May 30;497(7451):628-32 - PubMed
  62. Genes Dev. 2001 Dec 1;15(23):3059-87 - PubMed
  63. Vitam Horm. 2012;88:229-52 - PubMed
  64. Curr Biol. 2005 Mar 8;15(5):480-8 - PubMed
  65. Cell. 1996 Nov 15;87(4):661-73 - PubMed
  66. Proc Natl Acad Sci U S A. 2005 Nov 22;102(47):17026-31 - PubMed
  67. Sci Rep. 2014 Dec 08;4:7357 - PubMed
  68. Dev Cell. 2010 Apr 20;18(4):605-20 - PubMed
  69. PLoS One. 2013;8(1):e55274 - PubMed
  70. BMC Dev Biol. 2005 Sep 30;5:21 - PubMed
  71. J Biol Chem. 1999 Apr 23;274(17):12049-54 - PubMed
  72. Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6548-53 - PubMed
  73. Nature. 2014 Dec 4;516(7529):99-103 - PubMed
  74. Semin Cell Dev Biol. 2014 Sep;33:52-62 - PubMed
  75. Dev Cell. 2007 Jul;13(1):57-71 - PubMed
  76. Int J Biochem Cell Biol. 2014 Dec;57:45-53 - PubMed
  77. Nature. 2015 Mar 12;519(7542):187-192 - PubMed
  78. Science. 1996 Oct 11;274(5285):255-9 - PubMed
  79. Development. 1997 Nov;124(22):4697-705 - PubMed
  80. J Biol Chem. 2008 May 2;283(18):12478-88 - PubMed
  81. Sci STKE. 2006 Oct 31;2006(359):re14 - PubMed
  82. Dev Biol. 2005 Jan 1;277(1):51-62 - PubMed
  83. Dev Biol. 2011 Oct 1;358(1):168-80 - PubMed
  84. J Biol Chem. 1998 May 29;273(22):14037-45 - PubMed
  85. J Biol Chem. 2004 Sep 3;279(36):37485-90 - PubMed
  86. Nat Chem Biol. 2006 Nov;2(11):584-90 - PubMed
  87. Development. 1999 Nov;126(21):4873-84 - PubMed
  88. Blood. 2007 May 1;109(9):3757-66 - PubMed
  89. J Exp Med. 2017 Jul 3;214(7):2041-2058 - PubMed
  90. Development. 2017 Sep 1;144(17 ):3134-3144 - PubMed
  91. J Biol Chem. 2009 Mar 20;284(12 ):8013-22 - PubMed
  92. Development. 2014 Mar;141(6):1392-403 - PubMed
  93. Trends Biochem Sci. 1995 Apr;20(4):141-2 - PubMed
  94. Science. 2013 Dec 6;342(6163):1247-50 - PubMed
  95. Mol Cell. 1999 Oct;4(4):633-9 - PubMed
  96. J Biol Chem. 2003 Oct 3;278(40):38829-39 - PubMed
  97. Immunity. 2000 Aug;13(2):187-97 - PubMed
  98. Cell. 1993 Dec 31;75(7):1401-16 - PubMed
  99. Dev Cell. 2011 Jul 19;21(1):145-58 - PubMed
  100. Nature. 2005 May 5;435(7038):58-65 - PubMed
  101. Genes Dev. 2012 Jun 15;26(12):1312-25 - PubMed
  102. Dev Cell. 2011 Jun 14;20(6):764-74 - PubMed
  103. Sci Rep. 2013;3:2071 - PubMed
  104. Dev Biol. 2012 Aug 15;368(2):193-202 - PubMed
  105. Cell Rep. 2012 Aug 30;2(2):308-20 - PubMed
  106. Cell Chem Biol. 2017 Mar 16;24(3):252-280 - PubMed
  107. Nat Biotechnol. 2003 Aug;21(8):936-40 - PubMed
  108. Nucleic Acids Res. 2002 Jan 1;30(1):383-4 - PubMed
  109. J Biol Chem. 2008 Aug 8;283(32):22076-88 - PubMed
  110. J Cell Sci. 2017 Oct 1;130(19):3261-3271 - PubMed
  111. Science. 1996 Aug 2;273(5275):613-22 - PubMed
  112. Development. 2001 Jun;128(12):2351-63 - PubMed
  113. Nat Commun. 2014 Dec 04;5:5649 - PubMed
  114. PLoS Genet. 2017 Aug 31;13(8):e1006992 - PubMed
  115. Mech Dev. 2014 Feb;131:137-49 - PubMed
  116. J Cell Sci. 2015 Jun 15;128(12):2374-85 - PubMed
  117. J Biol Chem. 2007 Jun 8;282(23):16924-33 - PubMed
  118. Cell. 2008 Jun 27;133(7):1214-27 - PubMed
  119. Development. 1998 Aug;125(15):2983-93 - PubMed
  120. J Am Chem Soc. 2014 Mar 26;136(12):4544-50 - PubMed
  121. Nature. 1998 Jul 2;394(6688):85-8 - PubMed
  122. Cell. 2002 Oct 4;111(1):63-75 - PubMed
  123. Cell. 1996 Jul 12;86(1):21-34 - PubMed
  124. Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6394-9 - PubMed
  125. Biochem J. 2016 Mar 1;473(5):661-72 - PubMed
  126. Proc Natl Acad Sci U S A. 2010 Dec 21;107(51):22050-4 - PubMed
  127. Dev Biol. 2001 May 1;233(1):122-36 - PubMed
  128. PLoS Biol. 2013;11(3):e1001505 - PubMed
  129. PLoS Biol. 2005 Mar;3(3):e66 - PubMed
  130. Elife. 2017 Aug 21;6:null - PubMed
  131. J Biol Chem. 2000 Apr 14;275(15):10995-1001 - PubMed

Publication Types