Display options
Share it on

Genes (Basel). 2018 Mar 21;9(4). doi: 10.3390/genes9040175.

Is There Still Any Role for Oxidative Stress in Mitochondrial DNA-Dependent Aging?.

Genes

Gábor Zsurka, Viktoriya Peeva, Alexander Kotlyar, Wolfram S Kunz

Affiliations

  1. Institute of Experimental Epileptology and Neurocognition, University Bonn Medical Center, 53105 Bonn, Germany. [email protected].
  2. Department of Epileptology, University Bonn Medical Center, 53105 Bonn, Germany. [email protected].
  3. Institute of Experimental Epileptology and Neurocognition, University Bonn Medical Center, 53105 Bonn, Germany. [email protected].
  4. Department of Biochemistry & Molecular Biology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel. [email protected].
  5. Institute of Experimental Epileptology and Neurocognition, University Bonn Medical Center, 53105 Bonn, Germany. [email protected].
  6. Department of Epileptology, University Bonn Medical Center, 53105 Bonn, Germany. [email protected].

PMID: 29561808 PMCID: PMC5924517 DOI: 10.3390/genes9040175

Abstract

Recent deep sequencing data has provided compelling evidence that the spectrum of somatic point mutations in mitochondrial DNA (mtDNA) in aging tissues lacks G > T transversion mutations. This fact cannot, however, be used as an argument for the missing contribution of reactive oxygen species (ROS) to mitochondria-related aging because it is probably caused by the nucleotide selectivity of mitochondrial DNA polymerase γ (POLG). In contrast to point mutations, the age-dependent accumulation of mitochondrial DNA deletions is, in light of recent experimental data, still explainable by the segregation of mutant molecules generated by the direct mutagenic effects of ROS (in particular, of HO· radicals formed from H₂O₂ by a Fenton reaction). The source of ROS remains controversial, because the mitochondrial contribution to tissue ROS production is probably lower than previously thought. Importantly, in the discussion about the potential role of oxidative stress in mitochondria-dependent aging, ROS generated by inflammation-linked processes and the distribution of free iron also require careful consideration.

Keywords: aging; mitochondrial DNA; oxidative stress; reactive oxygen species

Conflict of interest statement

The authors declare no conflict of interest.

References

  1. Trends Genet. 2010 Aug;26(8):340-3 - PubMed
  2. Biochim Biophys Acta. 2009 Jul;1790(7):629-36 - PubMed
  3. FEBS Lett. 1991 Apr 9;281(1-2):9-19 - PubMed
  4. Nat Genet. 2008 Mar;40(3):275-9 - PubMed
  5. Free Radic Res. 2006 Dec;40(12):1284-94 - PubMed
  6. Biochim Biophys Acta. 2008 Jul-Aug;1777(7-8):853-9 - PubMed
  7. Aging Cell. 2006 Jun;5(3):279-82 - PubMed
  8. Free Radic Biol Med. 2002 May 1;32(9):804-12 - PubMed
  9. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7952-6 - PubMed
  10. J Biol Chem. 2006 Nov 24;281(47):36241-8 - PubMed
  11. Sci Rep. 2014 Oct 09;4:6569 - PubMed
  12. J Neurol Sci. 1990 Dec;100(1-2):14-21 - PubMed
  13. J Exp Bot. 2000 Dec;51(353):2053-66 - PubMed
  14. Am J Physiol Cell Physiol. 2009 Feb;296(2):C355-62 - PubMed
  15. J Neurosci. 2013 Nov 13;33(46):18270-6 - PubMed
  16. Prog Mol Biol Transl Sci. 2014;127:29-62 - PubMed
  17. Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18670-5 - PubMed
  18. Nature. 2013 Sep 19;501(7467):412-5 - PubMed
  19. Bioessays. 2011 Oct;33(10):742-8 - PubMed
  20. FEBS J. 2009 Oct;276(20):5768-87 - PubMed
  21. Annu Rev Biochem. 2017 Jun 20;86:715-748 - PubMed
  22. Aging (Albany NY). 2017 Feb 15;9(2):315-339 - PubMed
  23. Nat Genet. 1992 Dec;2(4):318-23 - PubMed
  24. PLoS One. 2010 Jul 07;5(7):e11468 - PubMed
  25. Neuron. 2015 Jul 15;87(2):371-81 - PubMed
  26. Science. 2005 Jul 15;309(5733):481-4 - PubMed
  27. Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):18769-70 - PubMed
  28. PLoS Genet. 2014 Feb 06;10(2):e1003974 - PubMed
  29. Nucleic Acids Res. 2004 Jun 04;32(10):3053-64 - PubMed
  30. Hum Mol Genet. 2002 Jan 15;11(2):133-45 - PubMed
  31. Metallomics. 2017 Oct 18;9(10 ):1447-1455 - PubMed
  32. Biochem J. 2002 Feb 15;362(Pt 1):137-47 - PubMed
  33. Mitochondrion. 2012 Mar;12(2):173-9 - PubMed
  34. Biochem J. 2001 May 15;356(Pt 1):61-9 - PubMed
  35. EMBO J. 1992 Jul;11(7):2717-26 - PubMed
  36. Ann Neurol. 2016 Aug;80(2):301-6 - PubMed
  37. Biochemistry (Mosc). 2006 Jan;71(1):60-7 - PubMed
  38. Hum Mol Genet. 2005 Apr 1;14(7):893-902 - PubMed
  39. Mol Biol Cell. 2016 Jan 15;27(2):223-35 - PubMed
  40. Acta Neuropathol. 2012 Aug;124(2):209-20 - PubMed
  41. PLoS Genet. 2013;9(9):e1003794 - PubMed
  42. Hum Mol Genet. 2007 Nov 15;16(22):2729-39 - PubMed
  43. Neurobiol Aging. 2018 Mar;63:120-127 - PubMed
  44. Nat Genet. 2006 May;38(5):518-20 - PubMed
  45. Nature. 2004 May 27;429(6990):417-23 - PubMed
  46. Neurobiol Aging. 1996 Nov-Dec;17(6):843-8 - PubMed
  47. Hum Mol Genet. 2014 Dec 1;23(23):6147-62 - PubMed
  48. Neuroscientist. 2016 Jun;22(3):266-77 - PubMed
  49. Nat Genet. 2006 May;38(5):515-7 - PubMed
  50. Front Pharmacol. 2014 Feb 17;5:19 - PubMed
  51. J Biol Chem. 1996 Aug 30;271(35):21177-86 - PubMed
  52. Acta Biol Med Ger. 1978;37(8):1167-76 - PubMed
  53. Hum Mol Genet. 2009 Mar 15;18(6):1028-36 - PubMed
  54. Nat Genet. 2001 Jun;28(2):147-50 - PubMed
  55. Aging Cell. 2010 Aug;9(4):536-44 - PubMed
  56. Biofizika. 2006 Jul-Aug;51(4):692-7 - PubMed
  57. Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):1163-70 - PubMed
  58. Annu Rev Biochem. 1992;61:1175-212 - PubMed
  59. Ann Neurol. 2006 Mar;59(3):478-89 - PubMed
  60. Ann Neurol. 2000 Nov;48(5):766-73 - PubMed
  61. Biochem Soc Trans. 2007 Nov;35(Pt 5):1228-31 - PubMed
  62. J Biol Chem. 2006 Nov 24;281(47):36236-40 - PubMed
  63. Neuromuscul Disord. 2002 Jun;12(5):484-93 - PubMed
  64. J Biol Chem. 2004 Feb 6;279(6):4127-35 - PubMed
  65. Biopolymers. 2015 Sep;103(9):491-508 - PubMed
  66. Chembiochem. 2007 Feb 12;8(3):341-52 - PubMed
  67. Mutat Res. 1998 May 25;400(1-2):99-115 - PubMed
  68. Cell Metab. 2017 Jan 10;25(1):57-71 - PubMed
  69. Am J Pathol. 1989 May;134(5):1167-73 - PubMed
  70. Ann Neurol. 2012 Jun;71(6):850-4 - PubMed
  71. FEBS Lett. 2018 Mar;592(5):728-742 - PubMed
  72. Essays Biochem. 2017 Jul 11;61(3):325-337 - PubMed
  73. Nucleic Acids Res. 2009 Apr;37(7):2327-35 - PubMed
  74. Ann Neurol. 2011 Mar;69(3):481-92 - PubMed
  75. Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5521-6 - PubMed
  76. Aging Cell. 2014 Aug;13(4):765-8 - PubMed
  77. Ageing Res Rev. 2017 Jan;33:89-104 - PubMed
  78. Nat Genet. 1992 Dec;2(4):324-9 - PubMed
  79. Nature. 2015 Jan 29;517(7536):635-9 - PubMed
  80. Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4135-40 - PubMed
  81. J Neurochem. 2012 Feb;120(3):419-29 - PubMed
  82. Hepatology. 2009 May;49(5):1655-63 - PubMed
  83. J Clin Invest. 2003 Nov;112(9):1351-60 - PubMed
  84. Cell Metab. 2014 Oct 7;20(4):662-9 - PubMed
  85. Acta Neuropathol. 2016 Aug;132(2):277-88 - PubMed
  86. Physiol Rev. 2014 Jul;94(3):909-50 - PubMed
  87. Nat Genet. 2011 Jun 26;43(8):806-10 - PubMed
  88. FASEB J. 2001 Feb;15(2):322-32 - PubMed
  89. Biochem J. 2009 Jan 1;417(1):1-13 - PubMed
  90. Nucleic Acids Res. 1999 Jun 1;27(11):2434-41 - PubMed
  91. Cell Metab. 2012 Jan 4;15(1):100-9 - PubMed
  92. PLoS One. 2017 Apr 28;12 (4):e0176795 - PubMed
  93. Nat Commun. 2016 Nov 22;7:13548 - PubMed
  94. J Biol Chem. 1998 Sep 11;273(37):23690-7 - PubMed
  95. Nat Genet. 2008 Apr;40(4):392-4 - PubMed
  96. Cell Metab. 2015 May 5;21(5):667-77 - PubMed

Publication Types