Display options
Share it on

Int J Biomater. 2017;2017:8074890. doi: 10.1155/2017/8074890. Epub 2017 Dec 17.

Application of Synthetic Polymeric Scaffolds in Breast Cancer 3D Tissue Cultures and Animal Tumor Models.

International journal of biomaterials

Girdhari Rijal, Chandra Bathula, Weimin Li

Affiliations

  1. Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99210, USA.

PMID: 29599800 PMCID: PMC5828246 DOI: 10.1155/2017/8074890

Abstract

Preparation of three-dimensional (3D) porous scaffolds from synthetic polymers is a challenge to most laboratories conducting biomedical research. Here, we present a handy and cost-effective method to fabricate polymeric hydrogel and porous scaffolds using poly(lactic-co-glycolic) acid (PLGA) or polycaprolactone (PCL). Breast cancer cells grown on 3D polymeric scaffolds exhibited distinct survival, morphology, and proliferation compared to those on 2D polymeric surfaces. Mammary epithelial cells cultured on PLGA- or PCL-coated slides expressed extracellular matrix (ECM) proteins and their receptors. Estrogen receptor- (ER-) positive T47D breast cancer cells are less sensitive to 4-hydroxytamoxifen (4-HT) treatment when cultured on the 3D porous scaffolds than in 2D cultures. Finally, cancer cell-laden polymeric scaffolds support consistent tumor formation in animals and biomarker expression as seen in human native tumors. Our data suggest that the porous synthetic polymer scaffolds satisfy the basic requirements for 3D tissue cultures both

References

  1. J Anat. 2015 Dec;227(6):746-56 - PubMed
  2. Breast Cancer Res Treat. 2010 Jul;122(1):35-43 - PubMed
  3. Nat Methods. 2007 Oct;4(10):855-60 - PubMed
  4. PLoS One. 2013 Oct 23;8(10):e77232 - PubMed
  5. Cancer Res. 1984 Apr;44(4):1409-14 - PubMed
  6. Tissue Eng Part A. 2011 Mar;17(5-6):713-24 - PubMed
  7. Proc Natl Acad Sci U S A. 2009 Jan 13;106(2):399-404 - PubMed
  8. FEBS Lett. 2004 Jan 16;557(1-3):148-54 - PubMed
  9. Biofabrication. 2017 Feb 03;9(1):015013 - PubMed
  10. Mol Biol Cell. 1999 Feb;10(2):271-82 - PubMed
  11. J Vis Exp. 2015 Feb 08;(96):null - PubMed
  12. Biotechnol Adv. 2014 Nov 15;32(7):1256-68 - PubMed
  13. J Transl Med. 2008 Oct 09;6:57 - PubMed
  14. Integr Biol (Camb). 2011 Jan;3(1):31-8 - PubMed
  15. Biotechnol J. 2014 Sep;9(9):1115-28 - PubMed
  16. Cancer Lett. 2017 Aug 1;400:1-8 - PubMed
  17. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7411-5 - PubMed
  18. Biomed Pharmacother. 2017 Jun;90:586-597 - PubMed
  19. Acc Chem Res. 2008 Jan;41(1):139-48 - PubMed
  20. Circ Res. 2007 Jan 5;100(1):79-87 - PubMed
  21. Nanoscale. 2015 Jun 28;7(24):10790-800 - PubMed
  22. J Biomed Mater Res A. 2008 Apr;85(1):25-35 - PubMed
  23. Mol Pharm. 2008 Sep-Oct;5(5):849-62 - PubMed
  24. Nat Rev Mol Cell Biol. 2007 Oct;8(10):839-45 - PubMed
  25. Acta Biomater. 2008 Mar;4(2):256-63 - PubMed
  26. Biomaterials. 2016 Mar;81:135-156 - PubMed
  27. J Cell Sci. 2012 Jul 1;125(Pt 13):3015-24 - PubMed
  28. PLoS One. 2012;7(10):e47995 - PubMed
  29. Sci Adv. 2017 Sep 13;3(9):e1700764 - PubMed
  30. Cell Mol Life Sci. 2008 Jan;65(1):177-86 - PubMed
  31. Oncol Rep. 2014 Oct;32(4):1481-8 - PubMed
  32. Prostate. 2009 Sep 15;69(13):1448-59 - PubMed
  33. J Cell Sci. 2007 Dec 15;120(Pt 24):4332-44 - PubMed
  34. Curr Opin Cell Biol. 2003 Dec;15(6):753-62 - PubMed
  35. J Biol Chem. 1998 Dec 11;273(50):33287-94 - PubMed
  36. Drug Des Devel Ther. 2014 Oct 14;8:1911-21 - PubMed
  37. PLoS One. 2015 Aug 10;10(8):e0135128 - PubMed
  38. Tissue Eng. 2001 Feb;7(1):23-33 - PubMed
  39. Br J Surg. 1995 Sep;82(9):1192-6 - PubMed
  40. Tissue Eng Part B Rev. 2013 Dec;19(6):485-502 - PubMed
  41. Mol Oncol. 2007 Jun;1(1):84-96 - PubMed
  42. PLoS One. 2012;7(12):e52335 - PubMed

Publication Types