Display options
Share it on

Front Synaptic Neurosci. 2018 Mar 28;10:3. doi: 10.3389/fnsyn.2018.00003. eCollection 2018.

Interaction of Norepinephrine and Glucocorticoids Modulate Inhibition of Principle Cells of Layer II Medial Entorhinal Cortex in Male Mice.

Frontiers in synaptic neuroscience

Jeremiah P Hartner, Laura A Schrader

Affiliations

  1. Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA, United States.
  2. Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States.

PMID: 29643800 PMCID: PMC5883071 DOI: 10.3389/fnsyn.2018.00003

Abstract

Spatial memory processing requires functional interaction between the hippocampus and the medial entorhinal cortex (MEC). The grid cells of the MEC are most abundant in layer II and rely on a complex network of local inhibitory interneurons to generate spatial firing properties. Stress can cause spatial memory deficits in males, but the specific underlying mechanisms affecting the known memory pathways remain unclear. Stress activates both the autonomic nervous system and the hypothalamic-pituitary-adrenal axis to release norepinephrine (NE) and glucocorticoids, respectively. Given that adrenergic receptor (AR) and glucocorticoid receptor (GR) expression is abundant in the MEC, both glucocorticoids and NE released in response to stress may have rapid effects on MEC-LII networks. We used whole-cell patch clamp electrophysiology in MEC slice preparations from male mice to test the effects of NE and glucocorticoids on inhibitory synaptic inputs of MEC-LII principal cells. Application of NE (100 μM) increased the frequency and amplitude of spontaneous inhibitory post-synaptic currents (sIPSCs) in approximately 75% of the principal cells tested. Unlike NE, bath application of dexamethasone (Dex, 1 μM), a synthetic glucocorticoid, or corticosterone (1 μM) the glucocorticoid in rodents, rapidly decreased the frequency of sIPSCs, but not miniature (mIPSCs) in MEC-LII principal cells. Interestingly, pre-treatment with Dex prior to NE application led to an NE-induced increase in sIPSC frequency in all cells tested. This effect was mediated by the α1-AR, as application of an α1-AR agonist, phenylephrine (PHE) yielded the same results, suggesting that a subset of cells in MEC-LII are unresponsive to α1-AR activation without prior activation of GR. We conclude that activation of GRs primes a subset of principal cells that were previously insensitive to NE to become responsive to α1-AR activation in a transcription-independent manner. These findings demonstrate the ability of stress hormones to markedly alter inhibitory signaling within MEC-LII circuits and suggest the intriguing possibility of modulation of network processing upstream of the hippocampus.

Keywords: grid cells; inhibitory interneurons; memory; psychological; pyramidal cells; slice preparation; stellate cells; stress

References

  1. Life Sci. 2002 Mar 22;70(18):2113-24 - PubMed
  2. J Neurosci. 1998 Jan 1;18(1):388-98 - PubMed
  3. Synapse. 1993 Mar;13(3):206-14 - PubMed
  4. Curr Opin Neurobiol. 2015 Apr;31:45-50 - PubMed
  5. J Comp Neurol. 1998 Aug 24;398(2):179-205 - PubMed
  6. J Comp Neurol. 2006 Jul 10;497(2):209-22 - PubMed
  7. Brain. 2017 Nov 1;140(11):3023-3038 - PubMed
  8. Endocr Rev. 1998 Jun;19(3):269-301 - PubMed
  9. J Neurosci. 2010 Aug 18;30(33):11128-42 - PubMed
  10. Neural Plast. 2008;2008:381243 - PubMed
  11. J Neurophysiol. 1993 Jul;70(1):128-43 - PubMed
  12. Nat Rev Neurosci. 2016 Apr;17 (4):239-49 - PubMed
  13. J Neuroendocrinol. 1994 Dec;6(6):681-7 - PubMed
  14. Behav Neurosci. 2011 Dec;125(6):797-824 - PubMed
  15. Neuroscience. 2010 Dec 1;171(2):367-72 - PubMed
  16. Learn Mem. 2006 Mar-Apr;13(2):110-3 - PubMed
  17. J Pharmacol Exp Ther. 1987 Jun;241(3):1079-91 - PubMed
  18. Hippocampus. 2007;17(12):1252-71 - PubMed
  19. Neuron. 2016 Jan 6;89(1):194-208 - PubMed
  20. Front Neuroendocrinol. 2005 Oct-Dec;26(3-4):103-8 - PubMed
  21. J Biol Chem. 2009 Apr 17;284(16):10980-91 - PubMed
  22. J Neurosci. 2007 Sep 19;27(38):10211-22 - PubMed
  23. Nat Neurosci. 2010 Jul;13(7):822-4 - PubMed
  24. Nat Neurosci. 2013 Mar;16(3):318-24 - PubMed
  25. J Comp Neurol. 1998 Feb 16;391(3):293-321 - PubMed
  26. J Neurosci. 2003 Jun 15;23(12):4850-7 - PubMed
  27. J Comp Neurol. 2008 Aug 20;509(6):551-65 - PubMed
  28. J Neurosci. 1999 Jun 15;19(12):5119-23 - PubMed
  29. Science. 2004 Aug 27;305(5688):1258-64 - PubMed
  30. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):14048-53 - PubMed
  31. Epilepsy Res. 1987 Jan;1(1):53-62 - PubMed
  32. Neuron. 2017 Apr 5;94(1):83-92.e6 - PubMed
  33. Brain Res Bull. 1979 Sep-Oct;4(5):593-601 - PubMed
  34. Methods Find Exp Clin Pharmacol. 1989 Nov;11(11):707-10 - PubMed
  35. JAMA Neurol. 2015 Dec 14;73(2):203-212 - PubMed
  36. Neural Plast. 2017;2017:7829507 - PubMed
  37. J Vis Exp. 2012 Mar 28;(61):null - PubMed
  38. Neurosci Lett. 1988 Sep 23;92(1):14-20 - PubMed
  39. Pharmacol Biochem Behav. 2013 Feb;103(4):814-20 - PubMed
  40. Brain Res. 1977 May 20;127(1):1-21 - PubMed
  41. J Neurophysiol. 2007 Nov;98(5):2868-77 - PubMed
  42. Mol Psychiatry. 2015 Feb;20(1):32-47 - PubMed
  43. Nature. 2005 Aug 11;436(7052):801-6 - PubMed
  44. Neuroscience. 2013 Sep 17;248:626-36 - PubMed
  45. Front Syst Neurosci. 2014 Oct 31;8:201 - PubMed
  46. Nature. 2013 Mar 14;495(7440):199-204 - PubMed
  47. Brain Res. 1969 Oct;15(2):563-6 - PubMed
  48. Hippocampus. 1993;3 Spec No:293-301 - PubMed
  49. Brain Res. 1996 Jan 8;706(1):113-22 - PubMed
  50. J Neurosci. 2009 Jan 14;29(2):393-401 - PubMed
  51. Behav Brain Res. 2013 Oct 1;254:50-64 - PubMed
  52. Endocrinology. 2015 Aug;156(8):2831-42 - PubMed
  53. Cell Mol Neurobiol. 2018 Jan;38(1):25-35 - PubMed
  54. Brain Res. 1984 Mar;319(1):69-101 - PubMed
  55. Life Sci. 1998;62(17-18):1567-71 - PubMed
  56. Eur J Pharmacol. 1999 May 7;372(1):9-16 - PubMed
  57. Neurobiol Learn Mem. 2016 Mar;129:83-98 - PubMed
  58. Trends Neurosci. 2015 Dec;38(12 ):763-775 - PubMed
  59. Psychoneuroendocrinology. 2015 Jan;51:68-79 - PubMed
  60. J Neurosci. 2010 Dec 15;30(50):16796-808 - PubMed
  61. Hippocampus. 2007;17(9):697-708 - PubMed
  62. Science. 2010 Jun 18;328(5985):1576-80 - PubMed
  63. Prog Neurobiol. 2002 Aug;67(5):345-91 - PubMed
  64. Nat Neurosci. 2018 Jan;21(1):81-91 - PubMed
  65. Prog Neurobiol. 2004 Oct;74(2):101-10 - PubMed
  66. Eur J Neurosci. 2002 Feb;15(3):553-60 - PubMed
  67. Mol Pharmacol. 2007 Jun;71(6):1572-81 - PubMed
  68. Neuron. 2013 Sep 18;79(6):1197-207 - PubMed
  69. Schizophr Res. 2015 Sep;167(1-3):18-27 - PubMed
  70. Neuron. 2013 Jan 9;77(1):141-54 - PubMed
  71. Neuron. 2014 Dec 17;84(6):1191-7 - PubMed
  72. Endocrinology. 2005 Oct;146(10):4292-301 - PubMed
  73. J Comp Neurol. 1978 Aug 1;180(3):509-32 - PubMed

Publication Types